April  2020, 19(4): 1949-1978. doi: 10.3934/cpaa.2020086

Controllability of the one-dimensional fractional heat equation under positivity constraints

1. 

Chair of Computational Mathematics, Fundación Deusto, Av. de las Universidades 24, 48007 Bilbao, Basque Country, Spain

2. 

Facultad de Ingeniería, Universidad de Deusto, Av. de las Universidades 24, 48007 Bilbao, Basque Country, Spain

3. 

George Mason University, Department of Mathematical Sciences, Fairfax, VA 22030, USA

4. 

Chair in Applied Analysis, Alexander von Humboldt-Professorship, Department of Mathematics, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 91058 Erlangen, Germany

5. 

Departamento de Matemáticas, Universidad Autonóma de Madrid, 24049, Madrid, Spain

Dedicated to professor Tomás Caraballo on the occasion of his 60th birthday

Received  May 2019 Revised  October 2019 Published  January 2020

In this paper, we analyze the controllability properties under positivity constraints on the control or the state of a one-dimensional heat equation involving the fractional Laplacian $ (-d_x^{\,2})^{s}{} $ ($ 0<s<1 $) on the interval $ (-1,1) $. We prove the existence of a minimal (strictly positive) time $ T_{\rm min} $ such that the fractional heat dynamics can be controlled from any initial datum in $ L^2(-1,1) $ to a positive trajectory through the action of a positive control, when $ s>1/2 $. Moreover, we show that in this minimal time constrained controllability is achieved by means of a control that belongs to a certain space of Radon measures. We also give some numerical simulations that confirm our theoretical results.

Citation: Umberto Biccari, Mahamadi Warma, Enrique Zuazua. Controllability of the one-dimensional fractional heat equation under positivity constraints. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1949-1978. doi: 10.3934/cpaa.2020086
References:
[1]

DyCon Toolbox, https://deustotech.github.io/dycon-platform-documentation/, 2019.,

[2]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, vol. 96 of Monographs in Mathematics, 2nd edition doi: 10.1007/978-3-0348-0087-7.

[3]

U. Biccari and V. Hernández-Santamaría, Controllability of a one-dimensional fractional heat equation: Theoretical and numerical aspects, IMA J. Math. Control. Inf., 36.4 (2019), 1199-1235.  doi: 10.1109/TAC.1985.1103850.

[4]

U. BiccariM. Warma and E. Zuazua, Local elliptic regularity for the Dirichlet fractional Laplacian, Adv. Nonlinear Stud., 17 (2017), 387-409.  doi: 10.1515/ans-2017-0014.

[5]

U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, in Recent Advances in PDEs: Analysis, Numerics and Control, Springer, 2018, 233-249.

[6]

M. BonforteA. Figalli and X. Ros-Oton, Infinite speed of propagation and regularity of solutions to the fractional porous medium equation in general domains, Comm. Pure Appl. Math., 70 (2017), 1472-1508.  doi: 10.1002/cpa.21673.

[7]

P. Cannarsa and G. Floridia, Approximate multiplicative controllability for degenerate parabolic problems with Robin boundary conditions, Comm. Appl. Ind. Math., 2 (2011).

[8]

P. CannarsaG. Floridia and A. Y. Khapalov, Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign, J. Math. Pures Appl., 108 (2017), 425-458.  doi: 10.1016/j.matpur.2017.07.002.

[9]

P. Cannarsa and A. Y. Khapalov, Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1293-1311.  doi: 10.3934/dcdsb.2010.14.1293.

[10]

W. L. Chan and B. Z. Guo, Optimal birth control of population dynamics. Ⅱ. Problems with free final time, phase constraints, and mini-max costs, J. Math. Anal. Appl., 146 (1990), 523-539.  doi: 10.1016/0022-247X(90)90322-7.

[11]

R. M. Colombo and A. Groli, Minimising stop and go waves to optimise traffic flow, Appl. Math. Letters, 17 (2004), 697-701.  doi: 10.1016/S0893-9659(04)90107-3.

[12]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim, 48 (2009), 2032-2050.  doi: 10.1137/080716372.

[13]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[14]

A. A. DubkovB. Spagnolo and V. V. Uchaikin, Lévy flight superdiffusion: An introduction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2649-2672.  doi: 10.1142/S0218127408021877.

[15]

C. FabreJ.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sec. A Math., 125 (1995), 31-61.  doi: 10.1017/S0308210500030742.

[16]

E. Fernandez-Cara and A. M{ü}nch, Numerical exact controllability of the 1d heat equation: duality and Carleman weights, J. Optim. Theor. Appl., 163 (2014), 253-285.  doi: 10.1007/s10957-013-0517-z.

[17]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. I. H. Poincare Nonlin. Anal., 17 (2000), 583-616.  doi: 10.1016/S0294-1449(00)00117-7.

[18]

G. Floridia, Approximate controllability for nonlinear degenerate parabolic problems with bilinear control, J. Differential Equations, 257 (2014), 3382-3422.  doi: 10.1016/j.jde.2014.06.016.

[19]

R. FourerD. M. Gay and B. W. Kernighan, A modeling language for mathematical programming, Management Science, 36 (1990), 519-554. 

[20]

O. Glass, On the controllability of the 1-d isentropic euler equation, J. Eur. Math. Soc., 9 (2007), 427-486.  doi: 10.4171/JEMS/85.

[21] R. GlowinskiJ.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems. A Numerical Approach, Cambridge University Press, 2008.  doi: 10.1017/S0962492900002452.
[22]

R. GorenfloF. Mainardi and A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons Fractals, 34 (2007), 87-103.  doi: 10.1016/j.chaos.2007.01.052.

[23]

N. HegoburuP. Magal and M. Tucsnak, Controllability with positivity constraints of the Lotka-McKendrick system, SIAM J. Control Optim., 56 (2018), 723-750.  doi: 10.1137/16M1103087.

[24]

V. Keyantuo and M. Warma, On the interior approximate controllability for fractional wave equations, Discrete Contin. Dyn. Syst., 36 (2016), 3719-3739.  doi: 10.3934/dcds.2016.36.3719.

[25]

M. Kwaśnicki, Spectral analysis of subordinate Brownian motions in half-line, Studia Math., 206 (2011), 211-271.  doi: 10.4064/sm206-3-2.

[26]

M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379-2402. 

[27]

K. Le Balc'h, Global null-controllability and nonnegative-controllability of slightly superlinear heat equations, J. Math. Pures Appl., to appear

[28]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068.  doi: 10.3934/dcds.2015.35.6031.

[29]

M. J. Lighthill and G. B. Whitham, On kinematic waves Ⅱ. a theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Series A Math. Phys. Sci., 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.

[30]

J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, 1968.

[31]

J. LohéacE. Trélat and E. Zuazua, Minimal controllability time for the heat equation under unilateral state or control constraints, Math. Models Methods Appl. Sci., 27 (2017), 1587-1644.  doi: 10.1142/S0218202517500270.

[32]

D. Maity, M. Tucsnak and E. Zuazua, Controllability of a class of infinite dimensional systems with age structure, Submitted.

[33]

D. MaityM. Tucsnak and E. Zuazua, Controllability and positivity constraints in population dynamics with age structuring and diffusion, J. Math. Pures Appl., 129 (2019), 153-179.  doi: 10.1016/j.matpur.2018.12.006.

[34]

B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.  doi: 10.1137/1010093.

[35]

A. MartinM. Möller and S. Moritz, Mixed integer models for the stationary case of gas network optimization, Math. Prog., 105 (2006), 563-582.  doi: 10.1007/s10107-005-0665-5.

[36]

S. MicuI. Roventa and M. Tucsnak, Time optimal boundary controls for the heat equation, J. Funct. Anal., 263 (2012), 25-49.  doi: 10.1016/j.jfa.2012.04.009.

[37]

D. Pighin and E. Zuazua, Controllability under positivity constraints of semilinear heat equations, Math. Control. Relat. Fields, 8 (2018), 935-964. 

[38]

D. Pighin and E. Zuazua, Controllability under positivity constraints of multi-d wave equations, in Trends in Control Theory and Partial Differential Equations, Springer, 2019, 195-232.

[39]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.

[40]

D. A. Rüland, Unique continuation for fractional schrödinger equations with rough potentials, Comm. Partial Differential Equations, 40 (2015), 77-114.  doi: 10.1080/03605302.2014.905594.

[41]

W. R. Schneider, Grey noise, in Stochastic Processes, Physics and Geometry (Ascona and Locarno, 1988), World Sci. Publ., Teaneck, NJ, 1990, 676-681.

[42]

L. Schwartz, Étude des sommes d'exponentielles réelles, Hermann, Paris, 1943.

[43]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.  doi: 10.1017/S0308210512001783.

[44]

M. C. Steinbach, On pde solution in transient optimization of gas networks, J. Comput. Appl. Math., 203 (2007), 345-361.  doi: 10.1016/j.cam.2006.04.018.

[45]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25-57.  doi: 10.1007/s10107-004-0559-y.

[46]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499-547.  doi: 10.1007/s11118-014-9443-4.

[47]

M. Warma, Approximate controllabilty from the exterior of space-time fractional diffusive equations, SIAM J. Control Optim., 57 (2019), 2037-2063.  doi: 10.1137/18M117145X.

[48]

M. Warma and S. Zamorano, Null controllability from the exterior of a one-dimensional nonlocal heat equation, arXiv: 1811.10477.

[49]

E. Zuazua, Controllability of partial differential equations, 3ème cycle. Castro Urdiales, Espagne.

show all references

References:
[1]

DyCon Toolbox, https://deustotech.github.io/dycon-platform-documentation/, 2019.,

[2]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, vol. 96 of Monographs in Mathematics, 2nd edition doi: 10.1007/978-3-0348-0087-7.

[3]

U. Biccari and V. Hernández-Santamaría, Controllability of a one-dimensional fractional heat equation: Theoretical and numerical aspects, IMA J. Math. Control. Inf., 36.4 (2019), 1199-1235.  doi: 10.1109/TAC.1985.1103850.

[4]

U. BiccariM. Warma and E. Zuazua, Local elliptic regularity for the Dirichlet fractional Laplacian, Adv. Nonlinear Stud., 17 (2017), 387-409.  doi: 10.1515/ans-2017-0014.

[5]

U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, in Recent Advances in PDEs: Analysis, Numerics and Control, Springer, 2018, 233-249.

[6]

M. BonforteA. Figalli and X. Ros-Oton, Infinite speed of propagation and regularity of solutions to the fractional porous medium equation in general domains, Comm. Pure Appl. Math., 70 (2017), 1472-1508.  doi: 10.1002/cpa.21673.

[7]

P. Cannarsa and G. Floridia, Approximate multiplicative controllability for degenerate parabolic problems with Robin boundary conditions, Comm. Appl. Ind. Math., 2 (2011).

[8]

P. CannarsaG. Floridia and A. Y. Khapalov, Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign, J. Math. Pures Appl., 108 (2017), 425-458.  doi: 10.1016/j.matpur.2017.07.002.

[9]

P. Cannarsa and A. Y. Khapalov, Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1293-1311.  doi: 10.3934/dcdsb.2010.14.1293.

[10]

W. L. Chan and B. Z. Guo, Optimal birth control of population dynamics. Ⅱ. Problems with free final time, phase constraints, and mini-max costs, J. Math. Anal. Appl., 146 (1990), 523-539.  doi: 10.1016/0022-247X(90)90322-7.

[11]

R. M. Colombo and A. Groli, Minimising stop and go waves to optimise traffic flow, Appl. Math. Letters, 17 (2004), 697-701.  doi: 10.1016/S0893-9659(04)90107-3.

[12]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim, 48 (2009), 2032-2050.  doi: 10.1137/080716372.

[13]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[14]

A. A. DubkovB. Spagnolo and V. V. Uchaikin, Lévy flight superdiffusion: An introduction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2649-2672.  doi: 10.1142/S0218127408021877.

[15]

C. FabreJ.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sec. A Math., 125 (1995), 31-61.  doi: 10.1017/S0308210500030742.

[16]

E. Fernandez-Cara and A. M{ü}nch, Numerical exact controllability of the 1d heat equation: duality and Carleman weights, J. Optim. Theor. Appl., 163 (2014), 253-285.  doi: 10.1007/s10957-013-0517-z.

[17]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. I. H. Poincare Nonlin. Anal., 17 (2000), 583-616.  doi: 10.1016/S0294-1449(00)00117-7.

[18]

G. Floridia, Approximate controllability for nonlinear degenerate parabolic problems with bilinear control, J. Differential Equations, 257 (2014), 3382-3422.  doi: 10.1016/j.jde.2014.06.016.

[19]

R. FourerD. M. Gay and B. W. Kernighan, A modeling language for mathematical programming, Management Science, 36 (1990), 519-554. 

[20]

O. Glass, On the controllability of the 1-d isentropic euler equation, J. Eur. Math. Soc., 9 (2007), 427-486.  doi: 10.4171/JEMS/85.

[21] R. GlowinskiJ.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems. A Numerical Approach, Cambridge University Press, 2008.  doi: 10.1017/S0962492900002452.
[22]

R. GorenfloF. Mainardi and A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons Fractals, 34 (2007), 87-103.  doi: 10.1016/j.chaos.2007.01.052.

[23]

N. HegoburuP. Magal and M. Tucsnak, Controllability with positivity constraints of the Lotka-McKendrick system, SIAM J. Control Optim., 56 (2018), 723-750.  doi: 10.1137/16M1103087.

[24]

V. Keyantuo and M. Warma, On the interior approximate controllability for fractional wave equations, Discrete Contin. Dyn. Syst., 36 (2016), 3719-3739.  doi: 10.3934/dcds.2016.36.3719.

[25]

M. Kwaśnicki, Spectral analysis of subordinate Brownian motions in half-line, Studia Math., 206 (2011), 211-271.  doi: 10.4064/sm206-3-2.

[26]

M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379-2402. 

[27]

K. Le Balc'h, Global null-controllability and nonnegative-controllability of slightly superlinear heat equations, J. Math. Pures Appl., to appear

[28]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068.  doi: 10.3934/dcds.2015.35.6031.

[29]

M. J. Lighthill and G. B. Whitham, On kinematic waves Ⅱ. a theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Series A Math. Phys. Sci., 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.

[30]

J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, 1968.

[31]

J. LohéacE. Trélat and E. Zuazua, Minimal controllability time for the heat equation under unilateral state or control constraints, Math. Models Methods Appl. Sci., 27 (2017), 1587-1644.  doi: 10.1142/S0218202517500270.

[32]

D. Maity, M. Tucsnak and E. Zuazua, Controllability of a class of infinite dimensional systems with age structure, Submitted.

[33]

D. MaityM. Tucsnak and E. Zuazua, Controllability and positivity constraints in population dynamics with age structuring and diffusion, J. Math. Pures Appl., 129 (2019), 153-179.  doi: 10.1016/j.matpur.2018.12.006.

[34]

B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.  doi: 10.1137/1010093.

[35]

A. MartinM. Möller and S. Moritz, Mixed integer models for the stationary case of gas network optimization, Math. Prog., 105 (2006), 563-582.  doi: 10.1007/s10107-005-0665-5.

[36]

S. MicuI. Roventa and M. Tucsnak, Time optimal boundary controls for the heat equation, J. Funct. Anal., 263 (2012), 25-49.  doi: 10.1016/j.jfa.2012.04.009.

[37]

D. Pighin and E. Zuazua, Controllability under positivity constraints of semilinear heat equations, Math. Control. Relat. Fields, 8 (2018), 935-964. 

[38]

D. Pighin and E. Zuazua, Controllability under positivity constraints of multi-d wave equations, in Trends in Control Theory and Partial Differential Equations, Springer, 2019, 195-232.

[39]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.

[40]

D. A. Rüland, Unique continuation for fractional schrödinger equations with rough potentials, Comm. Partial Differential Equations, 40 (2015), 77-114.  doi: 10.1080/03605302.2014.905594.

[41]

W. R. Schneider, Grey noise, in Stochastic Processes, Physics and Geometry (Ascona and Locarno, 1988), World Sci. Publ., Teaneck, NJ, 1990, 676-681.

[42]

L. Schwartz, Étude des sommes d'exponentielles réelles, Hermann, Paris, 1943.

[43]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.  doi: 10.1017/S0308210512001783.

[44]

M. C. Steinbach, On pde solution in transient optimization of gas networks, J. Comput. Appl. Math., 203 (2007), 345-361.  doi: 10.1016/j.cam.2006.04.018.

[45]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25-57.  doi: 10.1007/s10107-004-0559-y.

[46]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499-547.  doi: 10.1007/s11118-014-9443-4.

[47]

M. Warma, Approximate controllabilty from the exterior of space-time fractional diffusive equations, SIAM J. Control Optim., 57 (2019), 2037-2063.  doi: 10.1137/18M117145X.

[48]

M. Warma and S. Zamorano, Null controllability from the exterior of a one-dimensional nonlocal heat equation, arXiv: 1811.10477.

[49]

E. Zuazua, Controllability of partial differential equations, 3ème cycle. Castro Urdiales, Espagne.

Figure 1.  Graphic of the function $ q(x) $
Figure 2.  Evolution in the time interval $ (0,T_{\rm min}) $ of the solution of (2.1) with $ s = 0.8 $. The blue curve is the target we want to reach while the green bullets indicate the target we computed numerically
Figure 8.  Evolution in the time interval $ (0,T_{\rm min}) $ of the solution of (2.1) with $ s = 0.8 $. The blue curve is the target we want to reach while the green bullets indicate the target we computed numerically
Figure 3.  Minimal-time control: space-time distribution of the impulses. The white lines delimit the control region $ \omega = (-0.3,0.8) $. The regions in which the control is active are marked in yellow
Figure 4.  Minimal-time control: intensity of the impulses in logarithmic scale. In the $ (t,x) $ plane in blue the time $ t $ varies from $ t = 0 $ (left) to $ t = T_{\rm min} $ (right)
Figure 10.  Minimal-time control: intensity of the impulses in logarithmic scale. In the $ (t,x) $ plane in blue the time $ t $ varies from $ t = 0 $ (left) to $ t = T_{\rm min} $ (right)
Figure 5.  Evolution in the time interval $ (0,0.9) $ of the solution of (2.1) with $ s = 0.8 $. The blue curve is the target we want to reach while the green bullets indicate the target we computed numerically
Figure 6.  Behavior of the control in time $ T = 0.9 $. The white lines delimit the control region $ \omega = (-0.3,0.8) $. The regions in which the control is active are marked in yellow. The atomic nature is lost
Figure 7.  Evolution in the time interval $ (0,0.7) $ of the solution of (2.1) with $ s = 0.8 $ (left) and of the control $ u $ (right), under the constraint $ u\geq 0 $. The bold characters highlight the control region $ \omega = (-0.3,0.8) $. The control remains inactive during the entire time interval, and the equation is not controllable
Figure 9.  Minimal-time control: space-time distribution of the impulses. The white lines delimit the control region $ \omega = (-0.3,0.8) $. The regions in which the control is active are marked in yellow
Figure 11.  Evolution in the time interval $ (0,0.4) $ of the solution of (2.1) with $ s = 0.8 $. The blue curve is the target we want to reach while the green bullets indicate the target we computed numerically
Figure 12.  Behavior of the control in time $ T = 0.4 $. The white lines delimit the control region $ \omega = (-0.3,0.8) $. The regions in which the control is active are marked in yellow. The atomic nature is lost
Figure 13.  Evolution in the time interval $ (0,0.15) $ of the solution of (2.1) with $ s = 0.8 $ (left) and of the control $ u $ (right), under the constraint $ u\geq 0 $. The bold characters highlight the control region $ \omega = (-0.3,0.8) $. The equation is not controllable
[1]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[2]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[3]

Angkana Rüland, Mikko Salo. Quantitative approximation properties for the fractional heat equation. Mathematical Control and Related Fields, 2020, 10 (1) : 1-26. doi: 10.3934/mcrf.2019027

[4]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[5]

Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations and Control Theory, 2020, 9 (2) : 535-559. doi: 10.3934/eect.2020023

[6]

Víctor Hernández-Santamaría, Liliana Peralta. Some remarks on the Robust Stackelberg controllability for the heat equation with controls on the boundary. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 161-190. doi: 10.3934/dcdsb.2019177

[7]

Piermarco Cannarsa, Alessandro Duca, Cristina Urbani. Exact controllability to eigensolutions of the bilinear heat equation on compact networks. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1377-1401. doi: 10.3934/dcdss.2022011

[8]

Abdelaziz Khoutaibi, Lahcen Maniar, Omar Oukdach. Null controllability for semilinear heat equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1525-1546. doi: 10.3934/dcdss.2022087

[9]

Salah-Eddine Chorfi, Ghita El Guermai, Lahcen Maniar, Walid Zouhair. Impulse null approximate controllability for heat equation with dynamic boundary conditions. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022026

[10]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure and Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[11]

Chulan Zeng. Time analyticity of the biharmonic heat equation, the heat equation with potentials and some nonlinear heat equations. Communications on Pure and Applied Analysis, 2022, 21 (3) : 749-783. doi: 10.3934/cpaa.2021197

[12]

Ahmad Z. Fino, Mokhtar Kirane. The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3625-3650. doi: 10.3934/cpaa.2020160

[13]

Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations and Control Theory, 2020, 9 (2) : 399-430. doi: 10.3934/eect.2020011

[14]

Rajesh Dhayal, Muslim Malik, Syed Abbas, Anil Kumar, Rathinasamy Sakthivel. Approximation theorems for controllability problem governed by fractional differential equation. Evolution Equations and Control Theory, 2021, 10 (2) : 411-429. doi: 10.3934/eect.2020073

[15]

Larbi Berrahmoune. Constrained controllability for lumped linear systems. Evolution Equations and Control Theory, 2015, 4 (2) : 159-175. doi: 10.3934/eect.2015.4.159

[16]

Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control and Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011

[17]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control and Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[18]

Idriss Boutaayamou, Lahcen Maniar, Omar Oukdach. Stackelberg-Nash null controllability of heat equation with general dynamic boundary conditions. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021044

[19]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[20]

Jesus Ildefonso Díaz, Jacqueline Fleckinger-Pellé. Positivity for large time of solutions of the heat equation: the parabolic antimaximum principle. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 193-200. doi: 10.3934/dcds.2004.10.193

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (361)
  • HTML views (110)
  • Cited by (3)

Other articles
by authors

[Back to Top]