-
Previous Article
Instability of unidirectional flows for the 2D α-Euler equations
- CPAA Home
- This Issue
-
Next Article
Dynamics of fermentation models for the production of dry and sweet wine
Nonclassical diffusion with memory lacking instantaneous damping
Politecnico di Milano - Dipartimento di Matematica, Via Bonardi 9, 20133 Milano, Italy |
$ u_t-\Delta u_t -\int_0^\infty \kappa(s)\Delta u(t-s)\,{{\rm{d}}} s +f(u) = g $ |
$ -\Delta u $ |
References:
[1] |
E. C. Aifantis,
On the problem of diffusion in solids, Acta Mech., 37 (1980), 265-296.
doi: 10.1007/BF01202949. |
[2] |
G. I. Barenblatt, Iu. P. Zheltov and I. N. Kochina,
Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.
|
[3] |
V. Belleri and V. Pata,
Attractors for semilinear strongly damped wave equation on $\mathbb{R}^3$, Discrete Cont. Dyn. Sys., 7 (2001), 719-735.
doi: 10.3934/dcds.2001.7.719. |
[4] |
P. J. Chen and M. E. Gurtin,
On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.
|
[5] |
V. V. Chepyzhov, E. Mainini and V. Pata,
Stability of abstract linear semigroups arising from heat conduction with memory, Asymptot. Anal., 50 (2006), 269-291.
|
[6] |
V. V. Chepyzhov and V. Pata,
Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 46 (2006), 251-273.
|
[7] |
M. Conti, V. Danese, C. Giorgi and V. Pata,
A model of viscoelasticity with time-dependent memory kernels, Amer. J. Math., 140 (2018), 349-389.
doi: 10.1353/ajm.2018.0008. |
[8] |
M. Conti, S. Gatti and V. Pata,
Uniform decay properties of linear Volterra integro-differential equations, Math. Models Methods Appl. Sci., 18 (2018), 21-45.
doi: 10.1142/S0218202508002590. |
[9] |
M. Conti and E. M. Marchini,
Wave equations with memory: the minimal state approach, J. Math. Anal. Appl., 384 (2011), 607-625.
doi: 10.1016/j.jmaa.2011.06.009. |
[10] |
M. Conti and E. M. Marchini,
A remark on nonclassical diffusion equations with memory, Appl. Math. Optim., 73 (2016), 1-21.
doi: 10.1007/s00245-015-9290-8. |
[11] |
M. Conti, E. M. Marchini and V. Pata,
Semilinear wave equations of viscoelasticity in the minimal state framework, Discrete Contin. Dyn. Syst., 27 (2010), 1535-1552.
doi: 10.3934/dcds.2010.27.1535. |
[12] |
M. Conti, E. M. Marchini and V. Pata,
Nonclassical diffusion with memory, Math. Meth. Appl. Sci., 38 (2015), 948-958.
doi: 10.1002/mma.3120. |
[13] |
M. Conti, E. M. Marchini and V. Pata,
Reaction-diffusion with memory in the minimal state framework, Trans. Amer. Math. Soc., 366 (2014), 4969-4986.
doi: 10.1090/S0002-9947-2013-06097-7. |
[14] |
M. Conti and V. Pata,
On the regularity of global attractors, Discrete Contin. Dyn. Syst., 25 (2009), 1209-1217.
doi: 10.3934/dcds.2009.25.1209. |
[15] |
C. M. Dafermos,
Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 554-569.
doi: 10.1007/BF00251609. |
[16] |
V. Danese, P. G. Geredeli and V. Pata,
Exponential attractors for abstract equations with memory and applications to viscoelasticity, Discrete Contin. Dyn. Syst., 35 (2015), 2881-2904.
doi: 10.3934/dcds.2015.35.2881. |
[17] |
M. Fabrizio, C. Giorgi and V. Pata,
A new approach to equations with memory, Arch. Ration. Mech. Anal., 198 (2010), 189-232.
doi: 10.1007/s00205-010-0300-3. |
[18] |
M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory, in Evolution Equations, Semigroups and Functional Analysis (A. Lorenzi and B. Ruf, Eds.), pp.155–178, Progr. Nonlinear Differential Equations Appl. no. 50, Birkhäuser, Boston, 2002. |
[19] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, 1988. |
[20] |
A. Haraux, Systèmes dynamiques dissipatifs et applications, MassonParis, 1991. |
[21] |
J. Jäckle,
Heat conduction and relaxation in liquids of high viscosity, Phys. A, 162 (1990), 377-404.
|
[22] |
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations, Vol. 4 (C.M. Dafermos and M. Pokorny, Eds.), Elsevier, Amsterdam, 2008.
doi: 10.1016/S1874-5717(08)00003-0. |
[23] |
V. Pata,
Exponential stability in linear viscoelasticity, Quart. Appl. Math., 64 (2006), 499-513.
doi: 10.1007/s00032-009-0098-3. |
[24] |
V. Pata and A. Zucchi,
Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.
|
[25] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
[26] |
X. Wang, L. Yang and C. Zhong,
Attractors for the nonclassical diffusion equation with fading memory, J. Math. Anal. Appl., 362 (2010), 327-337.
doi: 10.1016/j.jmaa.2009.09.029. |
[27] |
X. Wang and C. Zhong,
Attractors for the non-autonomous nonclassical diffusion equation with fading memory, Nonlinear Anal., 71 (2009), 5733-5746.
doi: 10.1016/j.na.2009.05.001. |
show all references
References:
[1] |
E. C. Aifantis,
On the problem of diffusion in solids, Acta Mech., 37 (1980), 265-296.
doi: 10.1007/BF01202949. |
[2] |
G. I. Barenblatt, Iu. P. Zheltov and I. N. Kochina,
Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.
|
[3] |
V. Belleri and V. Pata,
Attractors for semilinear strongly damped wave equation on $\mathbb{R}^3$, Discrete Cont. Dyn. Sys., 7 (2001), 719-735.
doi: 10.3934/dcds.2001.7.719. |
[4] |
P. J. Chen and M. E. Gurtin,
On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.
|
[5] |
V. V. Chepyzhov, E. Mainini and V. Pata,
Stability of abstract linear semigroups arising from heat conduction with memory, Asymptot. Anal., 50 (2006), 269-291.
|
[6] |
V. V. Chepyzhov and V. Pata,
Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 46 (2006), 251-273.
|
[7] |
M. Conti, V. Danese, C. Giorgi and V. Pata,
A model of viscoelasticity with time-dependent memory kernels, Amer. J. Math., 140 (2018), 349-389.
doi: 10.1353/ajm.2018.0008. |
[8] |
M. Conti, S. Gatti and V. Pata,
Uniform decay properties of linear Volterra integro-differential equations, Math. Models Methods Appl. Sci., 18 (2018), 21-45.
doi: 10.1142/S0218202508002590. |
[9] |
M. Conti and E. M. Marchini,
Wave equations with memory: the minimal state approach, J. Math. Anal. Appl., 384 (2011), 607-625.
doi: 10.1016/j.jmaa.2011.06.009. |
[10] |
M. Conti and E. M. Marchini,
A remark on nonclassical diffusion equations with memory, Appl. Math. Optim., 73 (2016), 1-21.
doi: 10.1007/s00245-015-9290-8. |
[11] |
M. Conti, E. M. Marchini and V. Pata,
Semilinear wave equations of viscoelasticity in the minimal state framework, Discrete Contin. Dyn. Syst., 27 (2010), 1535-1552.
doi: 10.3934/dcds.2010.27.1535. |
[12] |
M. Conti, E. M. Marchini and V. Pata,
Nonclassical diffusion with memory, Math. Meth. Appl. Sci., 38 (2015), 948-958.
doi: 10.1002/mma.3120. |
[13] |
M. Conti, E. M. Marchini and V. Pata,
Reaction-diffusion with memory in the minimal state framework, Trans. Amer. Math. Soc., 366 (2014), 4969-4986.
doi: 10.1090/S0002-9947-2013-06097-7. |
[14] |
M. Conti and V. Pata,
On the regularity of global attractors, Discrete Contin. Dyn. Syst., 25 (2009), 1209-1217.
doi: 10.3934/dcds.2009.25.1209. |
[15] |
C. M. Dafermos,
Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 554-569.
doi: 10.1007/BF00251609. |
[16] |
V. Danese, P. G. Geredeli and V. Pata,
Exponential attractors for abstract equations with memory and applications to viscoelasticity, Discrete Contin. Dyn. Syst., 35 (2015), 2881-2904.
doi: 10.3934/dcds.2015.35.2881. |
[17] |
M. Fabrizio, C. Giorgi and V. Pata,
A new approach to equations with memory, Arch. Ration. Mech. Anal., 198 (2010), 189-232.
doi: 10.1007/s00205-010-0300-3. |
[18] |
M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory, in Evolution Equations, Semigroups and Functional Analysis (A. Lorenzi and B. Ruf, Eds.), pp.155–178, Progr. Nonlinear Differential Equations Appl. no. 50, Birkhäuser, Boston, 2002. |
[19] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, 1988. |
[20] |
A. Haraux, Systèmes dynamiques dissipatifs et applications, MassonParis, 1991. |
[21] |
J. Jäckle,
Heat conduction and relaxation in liquids of high viscosity, Phys. A, 162 (1990), 377-404.
|
[22] |
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations, Vol. 4 (C.M. Dafermos and M. Pokorny, Eds.), Elsevier, Amsterdam, 2008.
doi: 10.1016/S1874-5717(08)00003-0. |
[23] |
V. Pata,
Exponential stability in linear viscoelasticity, Quart. Appl. Math., 64 (2006), 499-513.
doi: 10.1007/s00032-009-0098-3. |
[24] |
V. Pata and A. Zucchi,
Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.
|
[25] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
[26] |
X. Wang, L. Yang and C. Zhong,
Attractors for the nonclassical diffusion equation with fading memory, J. Math. Anal. Appl., 362 (2010), 327-337.
doi: 10.1016/j.jmaa.2009.09.029. |
[27] |
X. Wang and C. Zhong,
Attractors for the non-autonomous nonclassical diffusion equation with fading memory, Nonlinear Anal., 71 (2009), 5733-5746.
doi: 10.1016/j.na.2009.05.001. |
[1] |
Jianbo Yuan, Shixuan Zhang, Yongqin Xie, Jiangwei Zhang. Attractors for a class of perturbed nonclassical diffusion equations with memory. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021261 |
[2] |
Xiaolei Dong, Yuming Qin. Strong pullback attractors for a nonclassical diffusion equation. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021313 |
[3] |
Monica Conti, Vittorino Pata. On the regularity of global attractors. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1209-1217. doi: 10.3934/dcds.2009.25.1209 |
[4] |
Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021 |
[5] |
V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure and Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115 |
[6] |
Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regularity of global attractors for reaction-diffusion systems with no more than quadratic growth. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1899-1908. doi: 10.3934/dcdsb.2017113 |
[7] |
Monica Conti, Elsa M. Marchini, Vittorino Pata. Exponential stability for a class of linear hyperbolic equations with hereditary memory. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1555-1565. doi: 10.3934/dcdsb.2013.18.1555 |
[8] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations and Control Theory, 2022, 11 (1) : 125-167. doi: 10.3934/eect.2020105 |
[9] |
Peng Gao. Limiting dynamics for stochastic nonclassical diffusion equations. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021288 |
[10] |
Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations and Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241 |
[11] |
Gianluca Mola. Global attractors for a three-dimensional conserved phase-field system with memory. Communications on Pure and Applied Analysis, 2008, 7 (2) : 317-353. doi: 10.3934/cpaa.2008.7.317 |
[12] |
Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132 |
[13] |
Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891 |
[14] |
Renhai Wang, Yangrong Li, Bixiang Wang. Random dynamics of fractional nonclassical diffusion equations driven by colored noise. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4091-4126. doi: 10.3934/dcds.2019165 |
[15] |
Cung The Anh, Tang Quoc Bao. Dynamics of non-autonomous nonclassical diffusion equations on $R^n$. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1231-1252. doi: 10.3934/cpaa.2012.11.1231 |
[16] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5465-5494. doi: 10.3934/dcdsb.2020354 |
[17] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1345-1377. doi: 10.3934/dcdsb.2021093 |
[18] |
Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270 |
[19] |
Yangrong Li, Jinyan Yin. Existence, regularity and approximation of global attractors for weakly dissipative p-Laplace equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1939-1957. doi: 10.3934/dcdss.2016079 |
[20] |
Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure and Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]