• Previous Article
    Lyapunov exponents and Oseledets decomposition in random dynamical systems generated by systems of delay differential equations
  • CPAA Home
  • This Issue
  • Next Article
    Chain recurrence and structure of $ \omega $-limit sets of multivalued semiflows
April  2020, 19(4): 2219-2233. doi: 10.3934/cpaa.2020097

Attractors for semilinear wave equations with localized damping and external forces

1. 

Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos 13566-590, SP, Brazil

2. 

Faculty of Engineering, University of Ricardo Palma, Lima, Peru

*Corresponding author. Current affiliation: Department of Mathematics, University of Brasília, Brasília 70910-900, DF, Brazil

Dedicated to Professor Tomás Caraballo on occasion of his Sixtieth Birthday

Received  May 2019 Revised  September 2019 Published  January 2020

This paper is concerned with long-time dynamics of semilinear wave equations defined on bounded domains of $ \mathbb{R}^3 $ with cubic nonlinear terms and locally distributed damping. The existence of regular finite-dimensional global attractors established by Chueshov, Lasiecka and Toundykov (2008) reflects a good deal of the current state of the art on this matter. Our contribution is threefold. First, we prove uniform boundedness of attractors with respect to a forcing parameter. Then, we study the continuity of attractors with respect to the parameter in a residual dense set. Finally, we show the existence of generalized exponential attractors. These aspects were not previously considered for wave equations with localized damping.

Citation: To Fu Ma, Paulo Nicanor Seminario-Huertas. Attractors for semilinear wave equations with localized damping and external forces. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2219-2233. doi: 10.3934/cpaa.2020097
References:
[1]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.

[2]

A. V. Babin and S. Yu Pilyugin, Continuous dependence of attractors on the shape of domain, J. Math. Sci., 87 (1997), 3304-3310.  doi: 10.1007/BF02355582.

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications 25, North-Holland, Amsterdam, 1992.

[4]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.

[5]

M. BlairH. F. Smith and C. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1817-1829.  doi: 10.1016/j.anihpc.2008.12.004.

[6]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512.  doi: 10.1007/s10884-004-4289-x.

[7]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long-time Dynamics, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.

[8]

I. ChueshovM. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Partial Differential Equations, 27 (2002), 1901-1951.  doi: 10.1081/PDE-120016132.

[9]

I. ChueshovI. Lasiecka and D. Toundykov, Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent, Discrete Contin. Dyn. Syst., 20 (2008), 459-509.  doi: 10.3934/dcds.2008.20.459.

[10]

M. ContiT. F. MaE. M. Marchini and P. N. Seminario Huertas, Asymptotics of viscoelastic materials with nonlinear density and memory effects, J. Differential Equations, 264 (2018), 4235-4259.  doi: 10.1016/j.jde.2017.12.010.

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Research in Applied Mathematics 37, Masson, Paris. Wiley, Chichester, 1994.

[12]

E. Feireisl and E. Zuazua, Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent, Comm. Partial Differential Equations, 18 (1993), 1539-1555.  doi: 10.1080/03605309308820985.

[13]

X. FuJ. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations, SIAM J. Control. Optim., 46 (2007), 1578-1614.  doi: 10.1137/040610222.

[14]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, 1988.

[15]

J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.

[16]

J. K. Hale and G. Raugel, Lower semicontinuity of attractors of gradient systems and applications, Ann. Mat. Pura Appl., 154 (1989), 281-326.  doi: 10.1007/BF01790353.

[17]

L. T. HoangE. J. Olson and J. C. Robinson, On the continuity of global attractors, Proc. Amer. Math. Soc., 143 (2015), 4389-4395.  doi: 10.1090/proc/12598.

[18]

R. Joly and C. Laurent, Stabilization for the semilinear wave equation with geometric control condition, Analysis and PDE, 6 (2013), 1089-1119.  doi: 10.2140/apde.2013.6.1089.

[19]

V. KalantarovA. Savostianov and S. Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincaré, 17 (2016), 2555-2584.  doi: 10.1007/s00023-016-0480-y.

[20]

O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, 1991. doi: 10.1017/CBO9780511569418.

[21]

I. LasieckaR. Triggiani and P.-F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients, J. Math. Anal. Appl., 235 (1999), 13-57.  doi: 10.1006/jmaa.1999.6348.

[22]

I. Lasiecka, R. Triggiani and X. Zhang, Nonconservative wave equations with unobserved Neumann B.C.: global uniqueness and observability in one shot, in, Differential Geometric Methods in the Control of Partial Differential Equations, 227–325, Contemp. Math. 268, Amer. Math. Soc., Providence, RI, 2000. doi: 10.1090/conm/268/04315.

[23]

T. F. MaP. Marín-Rubio and C. Surco Chuño, Dynamics of wave equations with moving boundary, J. Differential Equations, 262 (2017), 3317-3342.  doi: 10.1016/j.jde.2016.11.030.

[24]

X. Mei and C. Sun, Uniform attractors for a weakly damped wave equation with sup-cubic nonlinearity, Appl. Math. Letters, 95 (2019), 179-185.  doi: 10.1016/j.aml.2019.04.003.

[25]

J. V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807-823.  doi: 10.1002/cpa.3160220605.

[26]

J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., 24 (1974), 79-86.  doi: 10.1512/iumj.1974.24.24004.

[27]

L. Robbiano and C. Zuily, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998), 493-539.  doi: 10.1007/s002220050212.

[28]

A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential, J. Math. Pures Appl., 71 (1992), 455–467.

[29]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[30]

D. Toundykov, Optimal decay rates for solutions of a nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponent source terms under mixed boundary conditions, Nonlinear Anal., 67 (2007), 512-544.  doi: 10.1016/j.na.2006.06.007.

[31]

Z. Yang and Z. Liu, Longtime dynamics of the quasi-linear wave equations with structural damping and supercritical nonlinearities, Nonlinearity, 30 (2017), 1120-1145.  doi: 10.1088/1361-6544/aa599f.

show all references

References:
[1]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.

[2]

A. V. Babin and S. Yu Pilyugin, Continuous dependence of attractors on the shape of domain, J. Math. Sci., 87 (1997), 3304-3310.  doi: 10.1007/BF02355582.

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications 25, North-Holland, Amsterdam, 1992.

[4]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.

[5]

M. BlairH. F. Smith and C. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1817-1829.  doi: 10.1016/j.anihpc.2008.12.004.

[6]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512.  doi: 10.1007/s10884-004-4289-x.

[7]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long-time Dynamics, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.

[8]

I. ChueshovM. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Partial Differential Equations, 27 (2002), 1901-1951.  doi: 10.1081/PDE-120016132.

[9]

I. ChueshovI. Lasiecka and D. Toundykov, Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent, Discrete Contin. Dyn. Syst., 20 (2008), 459-509.  doi: 10.3934/dcds.2008.20.459.

[10]

M. ContiT. F. MaE. M. Marchini and P. N. Seminario Huertas, Asymptotics of viscoelastic materials with nonlinear density and memory effects, J. Differential Equations, 264 (2018), 4235-4259.  doi: 10.1016/j.jde.2017.12.010.

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Research in Applied Mathematics 37, Masson, Paris. Wiley, Chichester, 1994.

[12]

E. Feireisl and E. Zuazua, Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent, Comm. Partial Differential Equations, 18 (1993), 1539-1555.  doi: 10.1080/03605309308820985.

[13]

X. FuJ. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations, SIAM J. Control. Optim., 46 (2007), 1578-1614.  doi: 10.1137/040610222.

[14]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, 1988.

[15]

J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.

[16]

J. K. Hale and G. Raugel, Lower semicontinuity of attractors of gradient systems and applications, Ann. Mat. Pura Appl., 154 (1989), 281-326.  doi: 10.1007/BF01790353.

[17]

L. T. HoangE. J. Olson and J. C. Robinson, On the continuity of global attractors, Proc. Amer. Math. Soc., 143 (2015), 4389-4395.  doi: 10.1090/proc/12598.

[18]

R. Joly and C. Laurent, Stabilization for the semilinear wave equation with geometric control condition, Analysis and PDE, 6 (2013), 1089-1119.  doi: 10.2140/apde.2013.6.1089.

[19]

V. KalantarovA. Savostianov and S. Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincaré, 17 (2016), 2555-2584.  doi: 10.1007/s00023-016-0480-y.

[20]

O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, 1991. doi: 10.1017/CBO9780511569418.

[21]

I. LasieckaR. Triggiani and P.-F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients, J. Math. Anal. Appl., 235 (1999), 13-57.  doi: 10.1006/jmaa.1999.6348.

[22]

I. Lasiecka, R. Triggiani and X. Zhang, Nonconservative wave equations with unobserved Neumann B.C.: global uniqueness and observability in one shot, in, Differential Geometric Methods in the Control of Partial Differential Equations, 227–325, Contemp. Math. 268, Amer. Math. Soc., Providence, RI, 2000. doi: 10.1090/conm/268/04315.

[23]

T. F. MaP. Marín-Rubio and C. Surco Chuño, Dynamics of wave equations with moving boundary, J. Differential Equations, 262 (2017), 3317-3342.  doi: 10.1016/j.jde.2016.11.030.

[24]

X. Mei and C. Sun, Uniform attractors for a weakly damped wave equation with sup-cubic nonlinearity, Appl. Math. Letters, 95 (2019), 179-185.  doi: 10.1016/j.aml.2019.04.003.

[25]

J. V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807-823.  doi: 10.1002/cpa.3160220605.

[26]

J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., 24 (1974), 79-86.  doi: 10.1512/iumj.1974.24.24004.

[27]

L. Robbiano and C. Zuily, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998), 493-539.  doi: 10.1007/s002220050212.

[28]

A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential, J. Math. Pures Appl., 71 (1992), 455–467.

[29]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[30]

D. Toundykov, Optimal decay rates for solutions of a nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponent source terms under mixed boundary conditions, Nonlinear Anal., 67 (2007), 512-544.  doi: 10.1016/j.na.2006.06.007.

[31]

Z. Yang and Z. Liu, Longtime dynamics of the quasi-linear wave equations with structural damping and supercritical nonlinearities, Nonlinearity, 30 (2017), 1120-1145.  doi: 10.1088/1361-6544/aa599f.

Figure 1.  The control region $ \omega $ satisfies (GCC). Any ray of geometric optics inside $ \Omega $ hits $ \omega $
[1]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[2]

María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations and Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001

[3]

A. F. Almeida, M. M. Cavalcanti, J. P. Zanchetta. Exponential decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2039-2061. doi: 10.3934/cpaa.2018097

[4]

Adriana Flores de Almeida, Marcelo Moreira Cavalcanti, Janaina Pedroso Zanchetta. Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Evolution Equations and Control Theory, 2019, 8 (4) : 847-865. doi: 10.3934/eect.2019041

[5]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[6]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[7]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure and Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[8]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015

[9]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[10]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[11]

Shulin Wang, Yangrong Li. Probabilistic continuity of a pullback random attractor in time-sample. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2699-2722. doi: 10.3934/dcdsb.2020028

[12]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[13]

Ting Guo, Xianhua Tang, Qi Zhang, Zu Gao. Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1563-1579. doi: 10.3934/cpaa.2020078

[14]

Chunxiang Zhao, Chunyan Zhao, Chengkui Zhong. The global attractor for a class of extensible beams with nonlocal weak damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 935-955. doi: 10.3934/dcdsb.2019197

[15]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[16]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[17]

Alexei Ilyin, Kavita Patni, Sergey Zelik. Upper bounds for the attractor dimension of damped Navier-Stokes equations in $\mathbb R^2$. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2085-2102. doi: 10.3934/dcds.2016.36.2085

[18]

Tamara Fastovska. Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory. Communications on Pure and Applied Analysis, 2007, 6 (1) : 83-101. doi: 10.3934/cpaa.2007.6.83

[19]

Xudong Luo, Qiaozhen Ma. The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021253

[20]

Tingting Liu, Qiaozhen Ma, Ling Xu. Attractor of the Kirchhoff type plate equation with memory and nonlinear damping on the whole time-dependent space. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022046

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (266)
  • HTML views (139)
  • Cited by (2)

Other articles
by authors

[Back to Top]