-
Previous Article
Sigmoidal approximations of a delay neural lattice model with Heaviside functions
- CPAA Home
- This Issue
-
Next Article
Convergence of nonautonomous multivalued problems with large diffusion to ordinary differential inclusions
Large deviations for neutral stochastic functional differential equations
Department of Mathematics, Swansea University, Bay Campus, SA1 8EN, UK |
In this paper, under a one-sided Lipschitz condition on the drift coefficient we adopt (via contraction principle) an exponential approximation argument to investigate large deviations for neutral stochastic functional differential equations.
References:
[1] |
J. Bao, G. Yin and C. Yuan, Asymptotic Analysis for Functional Stochastic Differential Equations, Springer, Cham, 2016.
doi: 10.1007/978-3-319-46979-9. |
[2] |
J. Bao and C. Yuan,
Large deviations for neutral functional SDEs with jumps, Stochastic, 87 (2015), 48-70.
doi: 10.1080/17442508.2014.914516. |
[3] |
Li. Bo and T. Zhang,
Large deviations for perturbed reflected diffusion processes, Stochastics, 81 (2009), 531-543.
doi: 10.1080/17442500801981084. |
[4] |
A. Budhiraja, J. Chen and P. Dupuis,
Large deviations for stochastic partial differential equations driven by Poisson random measure, Stochastic Process. Appl., 123 (2013), 523-560.
doi: 10.1016/j.spa.2012.09.010. |
[5] |
A. Budhiraja, P. Dupuis and M. Fischer,
Large deviation properties of weakly interacting processes via weak convergence methods, Ann. Probab., 40 (2012), 74-102.
doi: 10.1214/10-AOP616. |
[6] |
A. Budhiraja, P. Dupuis and A. Ganguly,
Large deviations for small noise diffusions in a fast Markovian environment, Election. J. Probab., 23 (2018), 1-33.
doi: 10.1214/18-EJP228. |
[7] |
A. Budhiraja and P. Nyquist,
Large deviations for multidimensional state-dependent shot-noise processes, J. Appl. Probab., 52 (2015), 1097-1114.
doi: 10.1239/jap/1450802755. |
[8] |
A. Dembo and A. Zeitouni, Large Deviations Techniques and Applications, Springer-Verlag, Berlin Heidelberg, 1998.
doi: 10.1007/978-1-4612-5320-4. |
[9] |
M. Freidlin,
Random perturbations of reaction-diffusion equations: the quasi-deterministic approximation, Trans. Amer. Math. Soc., 305 (1988), 665-697.
doi: 10.2307/2000884. |
[10] |
S. Gadat, F. Panloup and C. Pellegrini, Large deviation principle for invariant distributions of memory gradient diffusions, Electron. J. Probab., 18 (2013), 34pp.
doi: 10.1214/EJP.v18-2031. |
[11] |
G. Huang, M. Mandjes and P. Spreij,
Large deviations for Markov-modulated diffusion processes with rapid switching, Stochastic Process. Appl., 126 (2016), 1785-1818.
doi: 10.1016/j.spa.2015.12.005. |
[12] |
R. S. Liptser and A. A. Pukhalskii,
Limit theorems on large deviations for semimartingales, Stochastics Stochastics Rep., 38 (1992), 201-249.
doi: 10.1080/17442509208833757. |
[13] |
K. Liu and T. Zhang,
A large deviation principle of retarded Ornstein-Uhlenbeck processes driven by Levy noise, Stoch. Anal. Appl., 32 (2014), 889-910.
doi: 10.1080/07362994.2014.939544. |
[14] |
X. Mao, Stochastic Differential Equations and Applications, 2$^{nd}$ edition, Horwood Publishing Limited, Chichester, 2008.
doi: 10.1533/9780857099402. |
[15] |
C. Mo and J. Luo,
Large deviations for stochastic differential delay equations, Nonlinear Anal., 80 (2013), 202-210.
doi: 10.1016/j.na.2012.10.004. |
[16] |
S. A. Mohammed and T. Zhang, Large deviations for stochastic systems with memory, Discrete Contin. Dyn. Syst. Ser. B, 66 (2006), 881–893.
doi: 10.3934/dcdsb.2006.6.881. |
[17] |
M. Röckner and T. Zhang,
Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles, Potential Anal., 26 (2007), 255-279.
doi: 10.1007/s11118-006-9035-z. |
[18] |
D.W. Stroock, An Introduction to the Theory of Large Deviations, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-1-4613-8514-1. |
[19] |
Y. Suo, J. Tao and W. Zhang,
Moderate deviation and central limit theorem for stochastic differential delay equations with polynomial growth, Front. Math. China, 13 (2018), 913-933.
doi: 10.1007/s11464-018-0710-3. |
show all references
References:
[1] |
J. Bao, G. Yin and C. Yuan, Asymptotic Analysis for Functional Stochastic Differential Equations, Springer, Cham, 2016.
doi: 10.1007/978-3-319-46979-9. |
[2] |
J. Bao and C. Yuan,
Large deviations for neutral functional SDEs with jumps, Stochastic, 87 (2015), 48-70.
doi: 10.1080/17442508.2014.914516. |
[3] |
Li. Bo and T. Zhang,
Large deviations for perturbed reflected diffusion processes, Stochastics, 81 (2009), 531-543.
doi: 10.1080/17442500801981084. |
[4] |
A. Budhiraja, J. Chen and P. Dupuis,
Large deviations for stochastic partial differential equations driven by Poisson random measure, Stochastic Process. Appl., 123 (2013), 523-560.
doi: 10.1016/j.spa.2012.09.010. |
[5] |
A. Budhiraja, P. Dupuis and M. Fischer,
Large deviation properties of weakly interacting processes via weak convergence methods, Ann. Probab., 40 (2012), 74-102.
doi: 10.1214/10-AOP616. |
[6] |
A. Budhiraja, P. Dupuis and A. Ganguly,
Large deviations for small noise diffusions in a fast Markovian environment, Election. J. Probab., 23 (2018), 1-33.
doi: 10.1214/18-EJP228. |
[7] |
A. Budhiraja and P. Nyquist,
Large deviations for multidimensional state-dependent shot-noise processes, J. Appl. Probab., 52 (2015), 1097-1114.
doi: 10.1239/jap/1450802755. |
[8] |
A. Dembo and A. Zeitouni, Large Deviations Techniques and Applications, Springer-Verlag, Berlin Heidelberg, 1998.
doi: 10.1007/978-1-4612-5320-4. |
[9] |
M. Freidlin,
Random perturbations of reaction-diffusion equations: the quasi-deterministic approximation, Trans. Amer. Math. Soc., 305 (1988), 665-697.
doi: 10.2307/2000884. |
[10] |
S. Gadat, F. Panloup and C. Pellegrini, Large deviation principle for invariant distributions of memory gradient diffusions, Electron. J. Probab., 18 (2013), 34pp.
doi: 10.1214/EJP.v18-2031. |
[11] |
G. Huang, M. Mandjes and P. Spreij,
Large deviations for Markov-modulated diffusion processes with rapid switching, Stochastic Process. Appl., 126 (2016), 1785-1818.
doi: 10.1016/j.spa.2015.12.005. |
[12] |
R. S. Liptser and A. A. Pukhalskii,
Limit theorems on large deviations for semimartingales, Stochastics Stochastics Rep., 38 (1992), 201-249.
doi: 10.1080/17442509208833757. |
[13] |
K. Liu and T. Zhang,
A large deviation principle of retarded Ornstein-Uhlenbeck processes driven by Levy noise, Stoch. Anal. Appl., 32 (2014), 889-910.
doi: 10.1080/07362994.2014.939544. |
[14] |
X. Mao, Stochastic Differential Equations and Applications, 2$^{nd}$ edition, Horwood Publishing Limited, Chichester, 2008.
doi: 10.1533/9780857099402. |
[15] |
C. Mo and J. Luo,
Large deviations for stochastic differential delay equations, Nonlinear Anal., 80 (2013), 202-210.
doi: 10.1016/j.na.2012.10.004. |
[16] |
S. A. Mohammed and T. Zhang, Large deviations for stochastic systems with memory, Discrete Contin. Dyn. Syst. Ser. B, 66 (2006), 881–893.
doi: 10.3934/dcdsb.2006.6.881. |
[17] |
M. Röckner and T. Zhang,
Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles, Potential Anal., 26 (2007), 255-279.
doi: 10.1007/s11118-006-9035-z. |
[18] |
D.W. Stroock, An Introduction to the Theory of Large Deviations, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-1-4613-8514-1. |
[19] |
Y. Suo, J. Tao and W. Zhang,
Moderate deviation and central limit theorem for stochastic differential delay equations with polynomial growth, Front. Math. China, 13 (2018), 913-933.
doi: 10.1007/s11464-018-0710-3. |
[1] |
Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793 |
[2] |
Junhao Hu, Chenggui Yuan. Strong convergence of neutral stochastic functional differential equations with two time-scales. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5831-5848. doi: 10.3934/dcdsb.2019108 |
[3] |
Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065 |
[4] |
Andriy Stanzhytsky, Oleksandr Misiats, Oleksandr Stanzhytskyi. Invariant measure for neutral stochastic functional differential equations with non-Lipschitz coefficients. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022005 |
[5] |
Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321 |
[6] |
Salah-Eldin A. Mohammed, Tusheng Zhang. Large deviations for stochastic systems with memory. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 881-893. doi: 10.3934/dcdsb.2006.6.881 |
[7] |
Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure and Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291 |
[8] |
Mathias Staudigl, Srinivas Arigapudi, William H. Sandholm. Large deviations and Stochastic stability in Population Games. Journal of Dynamics and Games, 2021 doi: 10.3934/jdg.2021021 |
[9] |
Brahim Boufoussi, Soufiane Mouchtabih. Controllability of neutral stochastic functional integro-differential equations driven by fractional brownian motion with Hurst parameter lesser than $ 1/2 $. Evolution Equations and Control Theory, 2021, 10 (4) : 921-935. doi: 10.3934/eect.2020096 |
[10] |
Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080 |
[11] |
Boling Guo, Yan Lv, Wei Wang. Schrödinger limit of weakly dissipative stochastic Klein--Gordon--Schrödinger equations and large deviations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2795-2818. doi: 10.3934/dcds.2014.34.2795 |
[12] |
Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295 |
[13] |
Jean-François Couchouron, Mikhail Kamenskii, Paolo Nistri. An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1845-1859. doi: 10.3934/cpaa.2013.12.1845 |
[14] |
Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038 |
[15] |
Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993 |
[16] |
Martino Bardi, Annalisa Cesaroni, Daria Ghilli. Large deviations for some fast stochastic volatility models by viscosity methods. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3965-3988. doi: 10.3934/dcds.2015.35.3965 |
[17] |
Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1279-1298. doi: 10.3934/dcdsb.2019220 |
[18] |
Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005 |
[19] |
Minghui Song, Liangjian Hu, Xuerong Mao, Liguo Zhang. Khasminskii-type theorems for stochastic functional differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1697-1714. doi: 10.3934/dcdsb.2013.18.1697 |
[20] |
Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3915-3934. doi: 10.3934/dcdsb.2018117 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]