April  2020, 19(4): 2385-2402. doi: 10.3934/cpaa.2020104

Sigmoidal approximations of a delay neural lattice model with Heaviside functions

1. 

School of Mathematics and Statistics and Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

Mathematisches Institut, Universität Tübingen, D-72076 Tübingen, Germany

*Corresponding author

Dedicated to Professor Tomás Caraballo on occasion of his 60th Birthday

Received  April 2019 Revised  October 2019 Published  January 2020

Fund Project: This work was partially supported by the NSF of China Grant No. 11971184.

The approximation of Heaviside coefficient functions in delay neural lattice models with delays by sigmoidal functions is investigated. The solutions of the delay sigmoidal models are shown to converge to a solution of the delay differential inclusion as the sigmoidal parameter goes to zero. In addition, the existence of global attractors is established and compared for the various systems.

Citation: Xiaoli Wang, Meihua Yang, Peter E. Kloeden. Sigmoidal approximations of a delay neural lattice model with Heaviside functions. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2385-2402. doi: 10.3934/cpaa.2020104
References:
[1]

S. I. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybernet, 27 (1977), 77-87.  doi: 10.1007/BF00337259.

[2]

J. P. Aubin and A. Cellina, Differential Inclusions, Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4.

[3]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Inter. J. Bifur. & Chaos, 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.

[4]

T. CaraballoF. Morillas and J. Valero, On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 51-77.  doi: 10.3934/dcds.2014.34.51.

[5]

S. Coombes and M. R. Owen, Evans functions for integral neural field equations with Heaviside firing rate function, SIAM J. Appl. Dyn. Syst., 3 (2004), 574-600.  doi: 10.1137/040605953.

[6]

G. Faye, Traveling fronts for lattice neural field equations, Physica D, 378/379 (2018) 20–32. doi: 10.1016/j.physd.2018.04.004.

[7]

Xiaoying Han and P. E. Kloeden, Asymptotic behaviour of a neural field lattice model with a Heaviside operator, Physica D: Nonlinear Phenomena, 389 (2019), 1-12.  doi: 10.1016/j.physd.2018.09.004.

[8]

Xiaoying Han and P. E. Kloeden, Sigmoidal approximations of Heaviside functions in neural lattice models, submitted.

[9]

Xiaoying HanWenxian Shen and Shengfan Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.

[10]

A. IlievN. Kyurkchiev and S. Markov, On the approximation of the step function by some sigmoid functions, Mathematics and Computers in Simulation, 133 (2017), 223-234.  doi: 10.1016/j.matcom.2015.11.005.

[11]

P. E. Kloeden and V. S. Kozyakin, The inflation of attractors and discretization: the autonomous case, Nonlinear Anal. TMA, 40 (2000), 333–343. doi: 10.1016/S0362-546X(00)85020-8.

[12]

P. E. Kloeden and V. S. Kozyakin, The inflation and perturbation of nonautonomous difference equations and their pullback attractors, Proceedings of the Sixth International Conference on Difference Equations, 139–152, CRC, Boca Raton, FL, 2004.

[13]

G. P. Szegö and G. Treccani, Semigruppi di Trasformazioni Multivoche, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 1969.

[14]

Xiaoli Wang, P. E. Kloeden and Meihua Yang, Asymptotic behaviour of a neural field lattice model with delays, submitted.

[15]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Physica D, 178 (2003), 51-61.  doi: 10.1016/S0167-2789(02)00807-2.

show all references

References:
[1]

S. I. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybernet, 27 (1977), 77-87.  doi: 10.1007/BF00337259.

[2]

J. P. Aubin and A. Cellina, Differential Inclusions, Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4.

[3]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Inter. J. Bifur. & Chaos, 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.

[4]

T. CaraballoF. Morillas and J. Valero, On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 51-77.  doi: 10.3934/dcds.2014.34.51.

[5]

S. Coombes and M. R. Owen, Evans functions for integral neural field equations with Heaviside firing rate function, SIAM J. Appl. Dyn. Syst., 3 (2004), 574-600.  doi: 10.1137/040605953.

[6]

G. Faye, Traveling fronts for lattice neural field equations, Physica D, 378/379 (2018) 20–32. doi: 10.1016/j.physd.2018.04.004.

[7]

Xiaoying Han and P. E. Kloeden, Asymptotic behaviour of a neural field lattice model with a Heaviside operator, Physica D: Nonlinear Phenomena, 389 (2019), 1-12.  doi: 10.1016/j.physd.2018.09.004.

[8]

Xiaoying Han and P. E. Kloeden, Sigmoidal approximations of Heaviside functions in neural lattice models, submitted.

[9]

Xiaoying HanWenxian Shen and Shengfan Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.

[10]

A. IlievN. Kyurkchiev and S. Markov, On the approximation of the step function by some sigmoid functions, Mathematics and Computers in Simulation, 133 (2017), 223-234.  doi: 10.1016/j.matcom.2015.11.005.

[11]

P. E. Kloeden and V. S. Kozyakin, The inflation of attractors and discretization: the autonomous case, Nonlinear Anal. TMA, 40 (2000), 333–343. doi: 10.1016/S0362-546X(00)85020-8.

[12]

P. E. Kloeden and V. S. Kozyakin, The inflation and perturbation of nonautonomous difference equations and their pullback attractors, Proceedings of the Sixth International Conference on Difference Equations, 139–152, CRC, Boca Raton, FL, 2004.

[13]

G. P. Szegö and G. Treccani, Semigruppi di Trasformazioni Multivoche, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 1969.

[14]

Xiaoli Wang, P. E. Kloeden and Meihua Yang, Asymptotic behaviour of a neural field lattice model with delays, submitted.

[15]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Physica D, 178 (2003), 51-61.  doi: 10.1016/S0167-2789(02)00807-2.

[1]

Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51

[2]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[3]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[4]

Sebastián Buedo-Fernández. Global attraction in a system of delay differential equations via compact and convex sets. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3171-3181. doi: 10.3934/dcdsb.2020056

[5]

Anatoly Neishtadt. On stability loss delay for dynamical bifurcations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 897-909. doi: 10.3934/dcdss.2009.2.897

[6]

Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809

[7]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[8]

Neville J. Ford, Stewart J. Norton. Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 367-382. doi: 10.3934/cpaa.2006.5.367

[9]

Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks and Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297

[10]

Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005

[11]

Urszula Foryś, Jan Poleszczuk. A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 627-641. doi: 10.3934/mbe.2011.8.627

[12]

Songbai Guo, Wanbiao Ma. Global behavior of delay differential equations model of HIV infection with apoptosis. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 103-119. doi: 10.3934/dcdsb.2016.21.103

[13]

Eugenii Shustin. Dynamics of oscillations in a multi-dimensional delay differential system. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 557-576. doi: 10.3934/dcds.2004.11.557

[14]

István Győri, Ferenc Hartung, Nahed A. Mohamady. Boundedness of positive solutions of a system of nonlinear delay differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 809-836. doi: 10.3934/dcdsb.2018044

[15]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations and Control Theory, 2022, 11 (1) : 177-197. doi: 10.3934/eect.2020107

[16]

Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367

[17]

Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257

[18]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, 2021, 29 (4) : 2599-2618. doi: 10.3934/era.2021003

[19]

Chengjian Zhang, Lu Zhao. The attractors for 2nd-order stochastic delay lattice systems. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 575-590. doi: 10.3934/dcds.2017023

[20]

Lin Yang, Yejuan Wang, Peter E. Kloeden. Exponential attractors for two-dimensional nonlocal diffusion lattice systems with delay. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1811-1831. doi: 10.3934/cpaa.2022048

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (266)
  • HTML views (101)
  • Cited by (1)

Other articles
by authors

[Back to Top]