We consider the Boltzmann operator for mixtures with cutoff Maxwellian, hard potential, or hard-sphere collision kernels. In a perturbative regime around the global Maxwellian equilibrium, the linearized Boltzmann multi-species operator $ \mathbf{L} $ is known to possess an explicit spectral gap $ \lambda_{ \mathbf{L}} $, in the global equilibrium weighted $ L^2 $ space. We study a new operator $ \mathbf{ L^{\varepsilon}} $ obtained by linearizing the Boltzmann operator for mixtures around local Maxwellian distributions, where all the species evolve with different small macroscopic velocities of order $ \varepsilon $, $ \varepsilon >0 $. This is a non-equilibrium state for the mixture. We establish a quasi-stability property for the Dirichlet form of $ \mathbf{ L^{\varepsilon}} $ in the global equilibrium weighted $ L^2 $ space. More precisely, we consider the explicit upper bound that has been proved for the entropy production functional associated to $ \mathbf{L} $ and we show that the same estimate holds for the entropy production functional associated to $ \mathbf{ L^{\varepsilon}} $, up to a correction of order $ \varepsilon $.
Citation: |
[1] |
P. Andries, K. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, J. Statist. Phys., 106 (2002), 993-1018.
doi: 10.1023/A:1014033703134.![]() ![]() ![]() |
[2] |
C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoam., 21 (2005), 819-841.
doi: 10.4171/RMI/436.![]() ![]() ![]() |
[3] |
A. V. Bobylev, The method of the Fourier transform in the theory of the Boltzmann equation for Maxwell molecules, Dokl. Akad. Nauk SSSR, 225 (1975), 1041-1044.
![]() ![]() |
[4] |
A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, in Soviet Scientific Reviews C, Mathematical Physics Reviews, Vol. 7, Harwood Academic Publ., Chur, (1988), 111–233.
![]() ![]() |
[5] |
L. Boudin, B. Grec and V. Pavan, The Maxwell-Stefan diffusion limit for a kinetic model of mixtures with general cross sections, Nonlinear Anal., 159 (2017), 40-61.
doi: 10.1016/j.na.2017.01.010.![]() ![]() ![]() |
[6] |
L. Boudin, B. Grec, M. Pavić and F. Salvarani, Diffusion asymptotics of a kinetic model for gaseous mixtures, Kinet. Relat. Models, 6 (2013), 137-157.
doi: 10.3934/krm.2013.6.137.![]() ![]() ![]() |
[7] |
L. Boudin, B. Grec and F. Salvarani, A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1427-1440.
doi: 10.3934/dcdsb.2012.17.1427.![]() ![]() ![]() |
[8] |
L. Boudin, B. Grec and F. Salvarani, The Maxwell-Stefan diffusion limit for a kinetic model of mixtures, Acta Appl. Math., 136 (2015), 79-90.
doi: 10.1007/s10440-014-9886-z.![]() ![]() ![]() |
[9] |
J. F. Bourgat, L. Desvillettes, P. Le Tallec and B. Perthame, Microreversible collisions for polyatomic gases and Boltzmann's theorem, Eur. J. Mech. B Fluids, 13 (1994), 237-254.
![]() ![]() |
[10] |
M. Briant, Stability of global equilibrium for the multi-species {B}oltzmann equation in {$L^\infty$} settings, Discrete Contin. Dyn. Syst., 36 (2016), 6669-6688.
doi: 10.3934/dcds.2016090.![]() ![]() ![]() |
[11] |
M. Briant and E. S. Daus, The Boltzmann equation for a multi-species mixture close to global equilibrium, Arch. Ration. Mech. Anal., 222 (2016), 1367-1443.
doi: 10.1007/s00205-016-1023-x.![]() ![]() ![]() |
[12] |
S. Brull, V. Pavan and J. Schneider, Derivation of a BGK model for mixtures, Eur. J. Mech. B Fluids, 33 (2012), 74-86.
doi: 10.1016/j.euromechflu.2011.12.003.![]() ![]() ![]() |
[13] |
T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz, Publ. Sci. Inst. Mittag-Leffler., Vol. 2, Almqvist & Wiksells Boktryckeri Ab, Uppsala, 1957.
![]() ![]() |
[14] |
C. Cercignani, Mathematical Methods in Kinetic Theory, 2, edition, Plenum Press, New York, 1990.
doi: 10.1007/978-1-4899-7291-0.![]() ![]() ![]() |
[15] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, Vol. 106, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4419-8524-8.![]() ![]() ![]() |
[16] |
E. S. Daus, A. Jüngel, C. Mouhot and N. Zamponi, Hypocoercivity for a linearized multispecies Boltzmann system, SIAM J. Math. Anal., 48 (2016), 538-568.
doi: 10.1137/15M1017934.![]() ![]() ![]() |
[17] |
L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005), 219-236.
doi: 10.1016/j.euromechflu.2004.07.004.![]() ![]() ![]() |
[18] |
V. Garzó, A. Santos and J. J. Brey, A kinetic model for a multicomponent gas, Phys. Fluids A, 1 (1989), 380-383.
doi: 10.1063/1.857458.![]() ![]() |
[19] |
V. Giovangigli, Multicomponent Flow Modeling, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999.
doi: 10.1007/978-1-4612-1580-6.![]() ![]() ![]() |
[20] |
H. Grad, Principles of the kinetic theory of gases, in Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, Springer-Verlag, Berlin-Göttingen-Heidelberg, (1958), 205–294.
![]() ![]() |
[21] |
H. Grad, Asymptotic theory of the Boltzmann equation. II, in Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), I, Academic Press, New York, (1963), 26–59.
![]() ![]() |
[22] |
D. E. Greene, Mathematical aspects of kinetic model equations for binary gas mixtures, J. Math. Phys., 16 (1975), 776-782.
doi: 10.1063/1.522631.![]() ![]() ![]() |
[23] |
Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., 197 (2010), 713-809.
doi: 10.1007/s00205-009-0285-y.![]() ![]() ![]() |
[24] |
D. Hilbert, Grundzüge Einer Allgemeinen Theorie der Linearen Integralgleichungen, Chelsea Publishing Company, New York, N.Y., 1953.
![]() ![]() |
[25] |
T. F. Morse, Kinetic model equations for a gas mixture, Phys. Fluids, 7 (1964), 2012-2013.
doi: 10.1063/1.1711112.![]() ![]() ![]() |
[26] |
C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Commun. Partial Differ. Equ., 31 (2006), 1321-1348.
doi: 10.1080/03605300600635004.![]() ![]() ![]() |
[27] |
C. Mouhot, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Commun. Math. Phys., 261 (2006), 629-672.
doi: 10.1007/s00220-005-1455-x.![]() ![]() ![]() |
[28] |
C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998.
doi: 10.1088/0951-7715/19/4/011.![]() ![]() ![]() |
[29] |
C. Mouhot and R. M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl., 87 (2007), 515-535.
doi: 10.1016/j.matpur.2007.03.003.![]() ![]() ![]() |
[30] |
J. Ross and P. Mazur, Some deductions from a formal statistical mechanical theory of chemical kinetics, J. Chem. Phys., 35 (1961), 19-28.
![]() |
[31] |
A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases, Physica A, 272 (1999), 563-573.
doi: 10.1016/S0378-4371(99)00336-2.![]() ![]() ![]() |
[32] |
L. Sirovich, Kinetic modeling of gas mixtures, Phys. Fluids, 5 (1962), 908-918.
doi: 10.1063/1.1706706.![]() ![]() ![]() |
[33] |
S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation, Lecture Notes Ser., Vol. 8, (eds. Liu Bie Ju), Center of Mathematical Sciences, City University of Hong Kong, Hong Kong.
![]() |
[34] |
C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, Vol. I, North-Holland, Amsterdam, (2002), 71–305.
doi: 10.1016/S1874-5792(02)80004-0.![]() ![]() ![]() |