• Previous Article
    Limiting dynamical behavior of random fractional FitzHugh-Nagumo systems driven by a Wong-Zakai approximation process
  • CPAA Home
  • This Issue
  • Next Article
    Low modes regularity criterion for a chemotaxis-Navier-Stokes system
May  2020, 19(5): 2737-2750. doi: 10.3934/cpaa.2020119

Asymptotic analysis for 1D compressible Navier-Stokes-Vlasov equations

1. 

School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China

2. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

3. 

School of Mathematics, Northwest University, Xi'an 710127, China

* Corresponding author

Received  April 2019 Revised  October 2019 Published  March 2020

Fund Project: H. Cui is supported by the National Natural Science Foundation of China (Grant No. 11971183, 11601164 and 11571380), the Natural Science Foundation of Fujian Province of China (Grant No. 2017J05007). W. Wang is supported by the National Natural Science Foundation of China (Grant No. 11871341, 11671150 and 11571231). L. Yao is supported by the National Natural Science Foundation of China (Grant No. 11571280 and 11931013), Natural Science Basic Research Program of Shaanxi (Program No. 2019JC-26) and FANEDD #201315

In this paper, we study the asymptotic analysis of 1D compressible Navier-Stokes-Vlasov equations. By taking advantage of the one space dimension, we obtain the hydrodynamic limit for compressible Navier-Stokes-Vlasov equations with the pressure $ P(\rho) = A\rho^{\gamma} $ $ (\gamma>1) $. The proof relies on weak convergence method.

Citation: Haibo Cui, Wenjun Wang, Lei Yao. Asymptotic analysis for 1D compressible Navier-Stokes-Vlasov equations. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2737-2750. doi: 10.3934/cpaa.2020119
References:
[1]

S. BenjellounL. Desvillettes and A. Moussa, Existence theory for the kinetic-fluid coupling when small droplets are treated as part of the fluid, J. Hyperbolic Differ. Equ., 11 (2014), 109-133.  doi: 10.1142/S0219891614500027.

[2]

L. BoudinL. DesvillettesC. Grandmont and A. Moussa, Global existence of solutions for the coupled Vlasov and Navier-Stokes equations, Differ. Integral Equ., 22 (2009), 1247-1271. 

[3]

R. Caflisch and G. C. Papanicolaou, Dynamic theory of suspensions with Brownian effects, SIAM J. Appl. Math., 43 (1983), 885-906.  doi: 10.1137/0143057.

[4]

J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Differ. Equ., 31 (2006), 1349-1379.  doi: 10.1080/03605300500394389.

[5]

J. A. CarrilloY. P. Choi and T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. Henri Poincare - Anal. Non Lineaire, 33 (2016), 273-307.  doi: 10.1016/j.anihpc.2014.10.002.

[6]

J. A. CarrilloR. J. Duan and A. Moussa, Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system, Kinet. Relat. Models, 4 (2011), 227-258.  doi: 10.3934/krm.2011.4.227.

[7]

R. M. Chen, Y. F. Su and L. Yao, Hydrodynamic limit for 1D compressible Navier-Stokes-Vlasov equations, Preprint, 2018. doi: 10.1063/1.4955026.

[8]

E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin., 42 (2001), 83-98. 

[9]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.

[10]

T. Goudon, Asymptotic problems for a kinetic model of two-phase flow, Proc. R. Soc. Edinb. Sect. A Math., 131 (2001), 1371-1384.  doi: 10.1017/S030821050000144X.

[11]

T. GoudonL. HeA. Moussa and P. Zhang, The Navier-Stokes-Vlasov-Fokker-Planck system near equilibrium, SIAM J. Math. Anal., 42 (2010), 2177-2202.  doi: 10.1137/090776755.

[12]

T. GoudonP. E. Jabin and A. F. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495-1515.  doi: 10.1512/iumj.2004.53.2508.

[13]

T. GoudonP. E. Jabin and A. F. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Ⅱ. Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517-1536.  doi: 10.1512/iumj.2004.53.2509.

[14]

K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998), 51-74.  doi: 10.1007/BF03167396.

[15]

M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edition, Springer, New York, 2011. doi: 10.1007/978-1-4419-7985-8.

[16]

M. J. Kang and A. F. Vasseur, Asymptotic analysis of Vlasov-type equations under strong local alignment regime, Math. Models Methods Appl. Sci., 25 (2015), 2153-2173.  doi: 10.1142/S0218202515500542.

[17]

N. Leger and A. F. Vasseur, Study of a generalized fragmentation model for sprays, J. Hyperbolic Differ. Equ., 6 (2009), 185-206.  doi: 10.1142/S0219891609001770.

[18]

F. C. LiY. M. Mu and D. H. Wang, Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-Planck equations: global existence near the equilibrium and large time behavior, SIAM J. Math. Anal., 49 (2017), 984-1026.  doi: 10.1137/15M1053049.

[19]

F. H. LinC. Liu and P. Zhang, On a micro-macro model for polymeric fluids near equilibrium, Comm. Pure Appl. Math., 60 (2007), 838-866.  doi: 10.1002/cpa.20159.

[20] P.L. Lions, Mathematical Topics in Fluid Mechanics, Compressible Models, Vol. II, Clarendon Press, Oxford, 1998. 
[21]

A. Mellet and A. F. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Math. Models Methods Appl. Sci., 17 (2007), 1039-1063.  doi: 10.1142/S0218202507002194.

[22]

A. Mellet and A. F. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations, Comm. Math. Phys., 281 (2008), 573-596.  doi: 10.1007/s00220-008-0523-4.

[23]

J. Simon, Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.

[24]

D. H. Wang and C. Yu, Global weak solution to the inhomogeneous Navier-Stokes-Vlasov equations, J. Differ. Equ., 259 (2015), 3976-4008.  doi: 10.1016/j.jde.2015.05.016.

[25]

C. Yu, Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl., 100 (2013), 275-293.  doi: 10.1016/j.matpur.2013.01.001.

show all references

References:
[1]

S. BenjellounL. Desvillettes and A. Moussa, Existence theory for the kinetic-fluid coupling when small droplets are treated as part of the fluid, J. Hyperbolic Differ. Equ., 11 (2014), 109-133.  doi: 10.1142/S0219891614500027.

[2]

L. BoudinL. DesvillettesC. Grandmont and A. Moussa, Global existence of solutions for the coupled Vlasov and Navier-Stokes equations, Differ. Integral Equ., 22 (2009), 1247-1271. 

[3]

R. Caflisch and G. C. Papanicolaou, Dynamic theory of suspensions with Brownian effects, SIAM J. Appl. Math., 43 (1983), 885-906.  doi: 10.1137/0143057.

[4]

J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Differ. Equ., 31 (2006), 1349-1379.  doi: 10.1080/03605300500394389.

[5]

J. A. CarrilloY. P. Choi and T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. Henri Poincare - Anal. Non Lineaire, 33 (2016), 273-307.  doi: 10.1016/j.anihpc.2014.10.002.

[6]

J. A. CarrilloR. J. Duan and A. Moussa, Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system, Kinet. Relat. Models, 4 (2011), 227-258.  doi: 10.3934/krm.2011.4.227.

[7]

R. M. Chen, Y. F. Su and L. Yao, Hydrodynamic limit for 1D compressible Navier-Stokes-Vlasov equations, Preprint, 2018. doi: 10.1063/1.4955026.

[8]

E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin., 42 (2001), 83-98. 

[9]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.

[10]

T. Goudon, Asymptotic problems for a kinetic model of two-phase flow, Proc. R. Soc. Edinb. Sect. A Math., 131 (2001), 1371-1384.  doi: 10.1017/S030821050000144X.

[11]

T. GoudonL. HeA. Moussa and P. Zhang, The Navier-Stokes-Vlasov-Fokker-Planck system near equilibrium, SIAM J. Math. Anal., 42 (2010), 2177-2202.  doi: 10.1137/090776755.

[12]

T. GoudonP. E. Jabin and A. F. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495-1515.  doi: 10.1512/iumj.2004.53.2508.

[13]

T. GoudonP. E. Jabin and A. F. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Ⅱ. Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517-1536.  doi: 10.1512/iumj.2004.53.2509.

[14]

K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998), 51-74.  doi: 10.1007/BF03167396.

[15]

M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edition, Springer, New York, 2011. doi: 10.1007/978-1-4419-7985-8.

[16]

M. J. Kang and A. F. Vasseur, Asymptotic analysis of Vlasov-type equations under strong local alignment regime, Math. Models Methods Appl. Sci., 25 (2015), 2153-2173.  doi: 10.1142/S0218202515500542.

[17]

N. Leger and A. F. Vasseur, Study of a generalized fragmentation model for sprays, J. Hyperbolic Differ. Equ., 6 (2009), 185-206.  doi: 10.1142/S0219891609001770.

[18]

F. C. LiY. M. Mu and D. H. Wang, Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-Planck equations: global existence near the equilibrium and large time behavior, SIAM J. Math. Anal., 49 (2017), 984-1026.  doi: 10.1137/15M1053049.

[19]

F. H. LinC. Liu and P. Zhang, On a micro-macro model for polymeric fluids near equilibrium, Comm. Pure Appl. Math., 60 (2007), 838-866.  doi: 10.1002/cpa.20159.

[20] P.L. Lions, Mathematical Topics in Fluid Mechanics, Compressible Models, Vol. II, Clarendon Press, Oxford, 1998. 
[21]

A. Mellet and A. F. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Math. Models Methods Appl. Sci., 17 (2007), 1039-1063.  doi: 10.1142/S0218202507002194.

[22]

A. Mellet and A. F. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations, Comm. Math. Phys., 281 (2008), 573-596.  doi: 10.1007/s00220-008-0523-4.

[23]

J. Simon, Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.

[24]

D. H. Wang and C. Yu, Global weak solution to the inhomogeneous Navier-Stokes-Vlasov equations, J. Differ. Equ., 259 (2015), 3976-4008.  doi: 10.1016/j.jde.2015.05.016.

[25]

C. Yu, Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl., 100 (2013), 275-293.  doi: 10.1016/j.matpur.2013.01.001.

[1]

Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263

[2]

Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052

[3]

Tian Ma, Shouhong Wang. Asymptotic structure for solutions of the Navier--Stokes equations. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 189-204. doi: 10.3934/dcds.2004.11.189

[4]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[5]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[6]

Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072

[7]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[8]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[9]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[10]

Oleg Imanuvilov. On the asymptotic properties for stationary solutions to the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2301-2340. doi: 10.3934/dcds.2020366

[11]

Xueke Pu, Min Li. Asymptotic behaviors for the full compressible quantum Navier-Stokes-Maxwell equations with general initial data. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5149-5181. doi: 10.3934/dcdsb.2019055

[12]

Tong Tang, Hongjun Gao. On the compressible Navier-Stokes-Korteweg equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2745-2766. doi: 10.3934/dcdsb.2016071

[13]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[14]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[15]

Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3741-3753. doi: 10.3934/dcdsb.2018313

[16]

Gung-Min Gie, Makram Hamouda, Roger Temam. Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks and Heterogeneous Media, 2012, 7 (4) : 741-766. doi: 10.3934/nhm.2012.7.741

[17]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[18]

Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279

[19]

Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137

[20]

Jian-Guo Liu, Zhaoyun Zhang. Existence of global weak solutions of $ p $-Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 469-486. doi: 10.3934/dcdsb.2021051

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (348)
  • HTML views (103)
  • Cited by (0)

Other articles
by authors

[Back to Top]