In this paper we study the existence of ground state solution and concentration of maxima for a class of strongly indefinite problem like
$ \begin{cases} -\Delta u+V(x)u = A(\epsilon x)f(u) \quad \mbox{in} \quad \mathbb{R}^{N}, \\ u\in H^{1}( \mathbb{R}^{N}), \end{cases} \qquad\qquad\qquad{(P)_{\epsilon}} $
where
$ 0 < \inf\limits_{x \in \mathbb{R}^{N}}A(x)\leq \lim\limits_{|x|\rightarrow+\infty}A(x)<\sup\limits_{x \in \mathbb{R}^{N}}A(x). $
Citation: |
[1] |
C. O. Alves and G. F. Germano, Ground state solution for a class of indefinite variational problems with critical growth, J. Differ. Equ., 265 (2018), 444-477.
doi: 10.1016/j.jde.2018.02.039.![]() ![]() ![]() |
[2] |
A. Ambrosetti and A. Malchiodi, Concentration phenomena for for NLS: recent results and new perspectives, in Perspectives in Nonlinear Partial Differential Equations, Contemporary Mathematics, Vol. 446, American Mathematical Society, Providence, RI, (2007), 19–30.
doi: 10.1090/conm/446/08624.![]() ![]() ![]() |
[3] |
A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140 (1997), 285-300.
doi: 10.1007/s002050050067.![]() ![]() ![]() |
[4] |
H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
[5] |
J. Chabrowski and A. Szulkin, On a semilinear Schrödinger equation with critical Sobolev exponent, Proc. Amer. Math. Soc., 130 (2001), 85-93.
doi: 10.1090/S0002-9939-01-06143-3.![]() ![]() ![]() |
[6] |
M. del Pino and P. L. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4 (1996), 121-137.
doi: 10.1007/BF01189950.![]() ![]() ![]() |
[7] |
J. M. B. do Ó and B. Ruf, On a Schrödinger equation with periodic potential and critical growth in $\mathbb{R}^2$, Nonlinear Differ. Equ. Appl., 13 (2006), 167-192.
doi: 10.1007/s00030-005-0034-3.![]() ![]() ![]() |
[8] |
A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0.![]() ![]() ![]() |
[9] |
M. F. Furtado and R. Marchi, Existence of solutions to asymptotically periodic Schrödinger equations, Electron. J. Differ. Equ., 2017 (2017), 1-7.
![]() ![]() |
[10] |
W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differ. Equ., 3 (1998), 441-472.
![]() ![]() |
[11] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part Ⅱ, Ann. Inst. Henri Poincare - Anal. Non Lineaire, 4 (1984), 223-283.
![]() ![]() |
[12] |
G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776.
doi: 10.1142/S0219199702000853.![]() ![]() ![]() |
[13] |
Y. G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_\alpha$, Commun. Partial Differ. Equ., 13 (1988), 1499-1519.
doi: 10.1080/03605308808820585.![]() ![]() ![]() |
[14] |
Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Commun. Math. Phys., 131 (1990), 223-253.
doi: 10.1007/BF02161413.![]() ![]() ![]() |
[15] |
A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.
doi: 10.1007/s00032-005-0047-8.![]() ![]() ![]() |
[16] |
A. Pankov and K. Pflüger, On a semilinear Schrödinger equation with periodic potential, Nonlinear Anal. Theory Methods Appl., 33 (1998), 593-609.
doi: 10.1016/S0362-546X(97)00689-5.![]() ![]() ![]() |
[17] |
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Reginal Conference Series in Mathematics, Vol. 65, American Mathematical Society, Providence, RI, 1986.
doi: 10.1090/cbms/065.![]() ![]() ![]() |
[18] |
P. H. Rabinowitz, A note on semilinear elliptic equation on $\mathbb{R}^N$, Nonlinear Analysis: A Tribute in Honour of G. Prodi, Quad. Scu. Norm. Super. Pisa., (1991), 307–318.
![]() ![]() |
[19] |
P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.
doi: 10.1007/BF00946631.![]() ![]() ![]() |
[20] |
A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.
doi: 10.1016/j.jfa.2009.09.013.![]() ![]() ![]() |
[21] |
A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Nonconvex Analysis and Applications, International Press, (2010), 597–632.
![]() ![]() |
[22] |
M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Boston, 1999.
doi: 10.1007/978-1-4612-1596-7.![]() ![]() ![]() |
[23] |
M. Schechter, Nonlinear Schrödinger operators with zero in the spectrum, Z. Angew. Math. Phys., 66 (2015), 2125-2141.
doi: 10.1007/s00033-015-0511-4.![]() ![]() ![]() |
[24] |
M. Schechter and W. Zou, Weak linking theorems and Schrödinger equations with critical Sobolev exponent, ESAIM Control Optim. Calc. Var., 9 (2003), 601–619. (electronic)
doi: 10.1051/cocv:2003029.![]() ![]() ![]() |
[25] |
X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math., 58 (2015), 715-728.
doi: 10.1007/s11425-014-4957-1.![]() ![]() ![]() |
[26] |
X. H. Tang, New super-quadratic conditions for asymptotically periodic Schrödinger equation, Canadian Math. Bull., 60 (2017), 422-435.
doi: 10.4153/CMB-2016-090-2.![]() ![]() ![]() |
[27] |
X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., 53 (1993), 229-244.
![]() ![]() |
[28] |
M. Willem, Minimax Theorems, Birkhauser, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[29] |
M. Willem and W. Zou, On a Schrödinger equation with periodic potential and spectrum point zero, Indiana Univ. Math. J., 52 (2003), 109-132.
doi: 10.1512/iumj.2003.52.2273.![]() ![]() ![]() |
[30] |
M. Yang, Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities, Nonlinear Anal., 72 (2010), 2620-2627.
doi: 10.1016/j.na.2009.11.009.![]() ![]() ![]() |
[31] |
H. Zhang, J. Xu and F. Zhang, Ground state solutions asymptotically periodic Schrödinger equations with indefinite linear part, Math. Meth. Appl. Sci., 38 (2015), 113-122.
doi: 10.1002/mma.3054.![]() ![]() ![]() |
[32] |
H. Zhang, J. Xu and F. Zhang, On a class of semilinear Schrödinger equation with indefinite linear part, J. Math. Anal. Appl., 414 (2014), 710-724.
doi: 10.1016/j.jmaa.2014.01.001.![]() ![]() ![]() |