In this paper, we study the backward compactness of random attractors, which describes the compactness of the union $ \cup_{s\leq\tau}\mathcal A(s,\omega) $ of random attractor sections over past times, $ \tau\in\mathbb R $. In particular, we prove the backward compactness and the regularity of random attractors for stochastic $ g $-Navier-Stokes equations under the condition that the force is backward tempered and backward limiting. The attraction universe in consideration is non-autonomous and consists of backward tempered sets.
Citation: |
[1] |
C. T. Anh and D. T. Quyet, Long-time behavior for 2D non-autonomous $g$-Navier-Stokes equations, Ann. Polon. Math., 103 (2012), 277-302.
doi: 10.4064/ap103-3-5.![]() ![]() ![]() |
[2] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
[3] |
H. O. Bae and J. Roh, Existence of solutions of the $g$-Navier-Stokes equations, Taiwan. J. Math., 8 (2004), 85-102.
doi: 10.11650/twjm/1500558459.![]() ![]() ![]() |
[4] |
I. Chueshov, Monotone Random Systems Theory and Applications, Vol.1779, Springer Science & Business Media, 2002.
doi: 10.1007/b83277.![]() ![]() ![]() |
[5] |
H. Cui, Y. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 38 (2018), 187-208.
doi: 10.1016/j.na.2015.08.009.![]() ![]() ![]() |
[6] |
H. Cui, J. A. Langa and Y. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Anal., 140 (2016), 208-235.
doi: 10.1016/j.na.2016.03.012.![]() ![]() ![]() |
[7] |
H. Cui, J. A. Langa and Y. Li, Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems, J. Dyn. Differ. Equ., 30 (2018), 1873-1898.
doi: 10.1007/s10884-017-9617-z.![]() ![]() ![]() |
[8] |
X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stochastic Anal. Appl., 24 (2006), 767-793.
doi: 10.1080/07362990600751860.![]() ![]() ![]() |
[9] |
D. Iftimie and G. Raugel, Some results on the Navier-Stokes equations in thin 3D domains, J. Differ. Equ., 169 (2001), 281-331.
doi: 10.1006/jdeq.2000.3900.![]() ![]() ![]() |
[10] |
J. Jiang and Y. Hou, The global attractor of $g$-Navier-Stokes equations with linear dampness on $\mathbb R^2$, Appl. Math. Comput., 215 (2009), 1068-1076.
doi: 10.1016/j.amc.2009.06.035.![]() ![]() ![]() |
[11] |
J. Jiang and Y. Hou, Pullback attractor of 2D non-autonomous $g$-Navier-Stokes equations on some bounded domains, Appl. Math. Mech. (English Ed.), 31 (2010), 697-708.
doi: 10.1007/s10483-010-1304-x.![]() ![]() ![]() |
[12] |
P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond., 463 (2007), 163-181.
doi: 10.1098/rspa.2006.1753.![]() ![]() ![]() |
[13] |
M. Kwak, H. Kwean and J. Roh, The dimension of attractor of the 2D g-Navier-Stokes equations, J. Math. Anal. Appl., 315 (2006), 436-461.
doi: 10.1016/j.jmaa.2005.04.050.![]() ![]() ![]() |
[14] |
Y. Li, H. Cui and J. Li, Upper semi-continuity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal., 109 (2014), 33-44.
doi: 10.1016/j.na.2014.06.013.![]() ![]() ![]() |
[15] |
Y. Li, A. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differ. Equ., 258 (2015), 504-534.
doi: 10.1016/j.jde.2014.09.021.![]() ![]() ![]() |
[16] |
Y. Li, R. Wang and J. Yin, Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2569-2586.
doi: 10.3934/dcdsb.2017092.![]() ![]() ![]() |
[17] |
Y. Li and S. Yang, Backward compact and periodic random attractors for non-autonomous Sine-Gordon equations with multiplicative noise, Commun. Pure Appl. Anal., 18 (2019), 1155-1175.
doi: 10.3934/cpaa.2019056.![]() ![]() ![]() |
[18] |
Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223.
doi: 10.3934/dcdsb.2016.21.1203.![]() ![]() ![]() |
[19] |
G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains. Ⅰ. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 6 (1993), 503-568.
doi: 10.1090/s0894-0347-1993-1179539-4.![]() ![]() ![]() |
[20] |
G. Raugel and G. R. Sell, Navier-Stokes Equations in Thin 3D Domains Ⅲ: Existence of a Global Attractor, Turbulence in Fluid Flows, 55 (1993), 137-163.
doi: 10.1007/978-1-4612-4346-5_9.![]() ![]() ![]() |
[21] |
J. Roh, $g$-Navier-Stokes Equations, Thesis, University of Minnesota, 2001.
![]() |
[22] |
J. Roh, Dynamics of the $g$-Navier-Stokes Equations, J. Differ. Equ., 211 (2005), 452-484.
doi: 10.1016/j.jde.2004.08.016.![]() ![]() ![]() |
[23] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015.![]() ![]() ![]() |
[24] |
M. Wang and Y. Tang, Attractors in $H^2$ and $L^{2p-2}$ for reaction-diffusion equations on unbounded domains, Commun. Pure Appl. Anal., 12 (2013), 1111-1121.
doi: 10.3934/cpaa.2013.12.1111.![]() ![]() ![]() |
[25] |
J. Yin, Y. Li and A. Gu, Backwards compact attractors and periodic attractors for non-autonomous damped wave equations on an unbounded domain, Comput. Math. Appl., 74 (2017), 744-758.
doi: 10.1016/j.camwa.2017.05.015.![]() ![]() ![]() |
[26] |
J. Yin, A. Gu and Y. Li, Backwards compact attractors for non-autonomous damped 3D Navier-Stokes equations, Dyn. Partial Differ. Equ., 14 (2017), 201-218.
doi: 10.4310/DPDE.2017.v14.n2.a4.![]() ![]() ![]() |
[27] |
W. Zhao, $H^1$-random attractors and random equilibria for stochastic reaction-diffusion equations with multiplicative noises, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2707-2721.
doi: 10.1016/j.cnsns.2013.03.012.![]() ![]() ![]() |
[28] |
C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differ. Equ., 223 (2006), 367-399.
doi: 10.1016/j.jde.2005.06.008.![]() ![]() ![]() |