-
Previous Article
Blowup of solutions to the thermal boundary layer problem in two-dimensional incompressible heat conducting flow
- CPAA Home
- This Issue
-
Next Article
Sharp Hardy-Leray inequality for three-dimensional solenoidal fields with axisymmetric swirl
Ricci curvature of conformal deformation on compact 2-manifolds
Department of Mathematics, Chosun University, Kwangju, 61452, Republic of Korea |
In this paper, we consider Ricci curvature of conformal deformation on compact 2-manifolds. And we prove that, by the conformal deformation, the resulting manifold is an Einstein manifold.
References:
[1] |
T. Aubin, Nonlinear Analysis on Manifolds, Springer-Verlag, New York, 1982. |
[2] |
M. S. Berger,
Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds, J. Differ. Geom., 5 (1971), 325-332.
|
[3] |
A. L. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.
doi: 10.1007/978-3-540-74311-8. |
[4] |
H. Ge and W. Jiang,
Kazdan-Warner equation on infinite graph, J. Korean Math. Soc., 55 (2018), 1091-1101.
doi: 10.4134/JKMS.j170561. |
[5] |
J. L. Kazdan and F. W. Warner,
Curvature functions for compact 2-manifolds, Ann. Math., 99 (1974), 14-47.
doi: 10.2307/1971012. |
[6] |
B. O'Neill, Semi-Riemannian Geometry, Academic, New York, 1983. |
[7] |
R. Walter, Real and Complex Analysis, McGraw-Hill, Singapore, 1986. |
show all references
References:
[1] |
T. Aubin, Nonlinear Analysis on Manifolds, Springer-Verlag, New York, 1982. |
[2] |
M. S. Berger,
Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds, J. Differ. Geom., 5 (1971), 325-332.
|
[3] |
A. L. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.
doi: 10.1007/978-3-540-74311-8. |
[4] |
H. Ge and W. Jiang,
Kazdan-Warner equation on infinite graph, J. Korean Math. Soc., 55 (2018), 1091-1101.
doi: 10.4134/JKMS.j170561. |
[5] |
J. L. Kazdan and F. W. Warner,
Curvature functions for compact 2-manifolds, Ann. Math., 99 (1974), 14-47.
doi: 10.2307/1971012. |
[6] |
B. O'Neill, Semi-Riemannian Geometry, Academic, New York, 1983. |
[7] |
R. Walter, Real and Complex Analysis, McGraw-Hill, Singapore, 1986. |
[1] |
Alberto Farina, Jesús Ocáriz. Splitting theorems on complete Riemannian manifolds with nonnegative Ricci curvature. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1929-1937. doi: 10.3934/dcds.2020347 |
[2] |
Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139 |
[3] |
Bang-Xian Han. New characterizations of Ricci curvature on RCD metric measure spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4915-4927. doi: 10.3934/dcds.2018214 |
[4] |
Paul W. Y. Lee, Chengbo Li, Igor Zelenko. Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 303-321. doi: 10.3934/dcds.2016.36.303 |
[5] |
Kelum Gajamannage, Erik M. Bollt. Detecting phase transitions in collective behavior using manifold's curvature. Mathematical Biosciences & Engineering, 2017, 14 (2) : 437-453. doi: 10.3934/mbe.2017027 |
[6] |
Ali Hyder, Luca Martinazzi. Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 283-299. doi: 10.3934/dcds.2015.35.283 |
[7] |
Ludovic Rifford. Ricci curvatures in Carnot groups. Mathematical Control and Related Fields, 2013, 3 (4) : 467-487. doi: 10.3934/mcrf.2013.3.467 |
[8] |
Tracy L. Payne. The Ricci flow for nilmanifolds. Journal of Modern Dynamics, 2010, 4 (1) : 65-90. doi: 10.3934/jmd.2010.4.65 |
[9] |
Luciano Pandolfi. Traction, deformation and velocity of deformation in a viscoelastic string. Evolution Equations and Control Theory, 2013, 2 (3) : 471-493. doi: 10.3934/eect.2013.2.471 |
[10] |
Jean-Claude Zambrini. Stochastic deformation of classical mechanics. Conference Publications, 2013, 2013 (special) : 807-813. doi: 10.3934/proc.2013.2013.807 |
[11] |
Lok Ming Lui, Chengfeng Wen, Xianfeng Gu. A conformal approach for surface inpainting. Inverse Problems and Imaging, 2013, 7 (3) : 863-884. doi: 10.3934/ipi.2013.7.863 |
[12] |
Uta Renata Freiberg. Einstein relation on fractal objects. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 509-525. doi: 10.3934/dcdsb.2012.17.509 |
[13] |
Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems and Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1 |
[14] |
Rolf Ryham, Chun Liu, Ludmil Zikatanov. Mathematical models for the deformation of electrolyte droplets. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 649-661. doi: 10.3934/dcdsb.2007.8.649 |
[15] |
Eriko Hironaka, Sarah Koch. A disconnected deformation space of rational maps. Journal of Modern Dynamics, 2017, 11: 409-423. doi: 10.3934/jmd.2017016 |
[16] |
Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379 |
[17] |
E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics and Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010 |
[18] |
Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249 |
[19] |
Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557 |
[20] |
Igor Rivin and Jean-Marc Schlenker. The Schlafli formula in Einstein manifolds with boundary. Electronic Research Announcements, 1999, 5: 18-23. |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]