In this paper, we study the formation of singularities in a finite time for the solution of the boundary layer equations in the two-dimensional incompressible heat conducting flow. We obtain that the first order spacial derivative of the solution blows up in a finite time for the thermal boundary layer problem, for a kind of data which are analytic in the tangential variable but do not satisfy the Oleinik monotonicity condition, by using a Lyapunov functional approach. It is observed that the buoyancy coming from the temperature difference in the flow may destabilize the thermal boundary layer.
Citation: |
[1] |
R. Alexandre, Y. G. Wang, C. J. Xu and T. Yang, Well posedness of the Prandtl equation in Sobolev spaces, J. Amer. Math. Soc., 28 (2015), 745-784.
doi: 10.1090/S0894-0347-2014-00813-4.![]() ![]() ![]() |
[2] |
D. Chen, Y. Wang and Z. Zhang, Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow, Ann. Inst. Henri Poincare - Anal. Non Lineaire, 35 (2018), 1119-1142.
doi: 10.1016/j.anihpc.2017.11.001.![]() ![]() ![]() |
[3] |
W. E and B. Engquist, Blowup of solutions of the unsteady Prandtl's equation, Commun. Pure Appl. Math., 50 (1997), 1287-1293.
doi: 10.1002/(SICI)1097-0312(199712)50:12<1287::AID-CPA4>3.0.CO;2-4.![]() ![]() ![]() |
[4] |
D. Gérard-Varet and E. Dormy, On the ill-posedness of the Prandtl equation, J. Amer. Math. Soc., 23 (2010), 591-609.
doi: 10.1090/S0894-0347-09-00652-3.![]() ![]() ![]() |
[5] |
D. Gérard-Varet and N. Masmoudi, Well-posedness for the Prandtl system without analyticity or monotoncity, Ann. Sci. Éc. Norm. Supér., 48 (2015), 1273–1325.
doi: 10.24033/asens.2270.![]() ![]() ![]() |
[6] |
Y. Guo and T. Nguyen, A note on the Prandtl boundary layers, Commun. Pure Appl. Math., 64 (2011), 1416-1438.
doi: 10.1002/cpa.20377.![]() ![]() ![]() |
[7] |
I. Kukavica, V. Vicol and F. Wang, The van Dommelen and Shen singularity in the Prandtl equations, Commun. Pure Appl. Math., 307 (2017), 288-311.
doi: 10.1016/j.aim.2016.11.013.![]() ![]() ![]() |
[8] |
M. C. Lombardo, M. Cannone and M. Sammartino, Well-posedness of the boundary layer equations, SIAM J. Math. Anal., 35 (2003), 987-1004.
doi: 10.1137/S0036141002412057.![]() ![]() ![]() |
[9] |
W. Li and T. Yang, Well-posedness in Gevrey function space for the Prandtl equations with non-degenerate critical points, J. Eur. Math. Soc., 22 (2020), 717-775.
doi: 10.4171/jems/931.![]() ![]() ![]() |
[10] |
C. J. Liu and T. Yang, Ill-posedness of the Prandtl equations in Sobolev spaces around a shear flow with general decay, J. Math. Pure Appl., 108 (2017), 150-162.
doi: 10.1016/j.matpur.2016.10.014.![]() ![]() ![]() |
[11] |
N. Masmoudi and T. K. Wong, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Commun. Pure Appl. Math., 68 (2015), 1683-1741.
doi: 10.1002/cpa.21595.![]() ![]() ![]() |
[12] |
O. A. Oleinik, The Prandtl system of equations in boundary layer theory, Soviet Math. Dokl., 4 (1963), 583-586.
![]() ![]() |
[13] |
O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Chapman & Hall/CRC, Boca Raton, FL, 1999.
![]() ![]() |
[14] |
L. Prandtl, Über Flüssigkeitsbewegungen bei sehr kleiner Reibung, Verh. III Intern. Math. Kongr., Heidelberg, (1904), 485–491.
![]() |
[15] |
M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, Ⅰ. Existence for Euler and Prandtl equations, Commun. Math. Phys., 192 (1998), 433-461.
doi: 10.1007/s002200050304.![]() ![]() ![]() |
[16] |
M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, Ⅱ. Construction of the Navier-Stokes solution, Commun. Math. Phys., 192 (1998), 463-491.
doi: 10.1007/s002200050305.![]() ![]() ![]() |
[17] |
H. Schlichting and K. Gersten., Boundary Layer Theory, 9$^th$ edition, Springer, Berlin, Heidelberg, 2017.
doi: 10.1007/978-3-662-52919-5.![]() ![]() ![]() |
[18] |
Z. Xin and L. Zhang, On the global existence of solutions to the Prandtl's system, Adv. Math., 181 (2004), 88-133.
doi: 10.1016/S0001-8708(03)00046-X.![]() ![]() ![]() |
[19] |
Y. G. Wang and S. Y. Zhu, Mathematical analysis of boundary layers in two-dimensional incompressible viscous heat conducting flows (in Chinese), Sci. Sin. Math., 49 (2019), 267-280.
![]() |
[20] |
Y. G. Wang and S. Y. Zhu, Well-posedness of the boundary layer equation in incompressible heat conducting flow with analytic datum, to appear in Math. Meth. Appl. Sci..
doi: 10.1002/mma.6226.![]() ![]() |
[21] |
P. Zhang and Z. Zhang, Long time well-posedness of Prandtl system with small and analytic initial data, J. Funct. Anal., 270 (2016), 2591-2615.
doi: 10.1016/j.jfa.2016.01.004.![]() ![]() ![]() |