June  2020, 19(6): 3257-3281. doi: 10.3934/cpaa.2020144

Stable periodic solutions for Nazarenko's equation

1. 

Bolyai Institute, University of Szeged, 1 Aradi vértanúk tere, Szeged, Hungary

2. 

MTA-SZTE Analysis and Stochastics Research Group, , Bolyai Institute, University of Szeged, 1 Aradi vértanúk tere, Szeged, Hungary

* Corresponding author

Received  July 2019 Revised  December 2019 Published  March 2020

Fund Project: This research was supported by the EU-funded Hungarian grant EFOP-3.6.1-16-2016-00008. Gabriella Vas was also supported by the National Research, Development and Innovation Office of Hungary, Grant No. K129322

In 1976 Nazarenko proposed studying the delay differential equation
$ \begin{equation*} \dot{y}(t) = -py(t)+\dfrac{qy(t)}{r+y^{n}(t-\tau)},\qquad t>0, \end{equation*} $
under the assumptions that
$ p,q,r,\tau\in\left(0,\infty\right) $
,
$ n\in\mathbb{N} = \left\{ 1,2,\ldots\right\} $
and
$ q/p>r $
. We show that if
$ \tau $
or
$ n $
is large enough, then the positive periodic solution oscillating slowly about
$ K = \left(q/p-r\right)^{1/n} $
is unique, and the corresponding periodic orbit is asymptotically stable. We also determine the asymptotic shape of the periodic solution as
$ n\rightarrow\infty $
.
Citation: Szandra Beretka, Gabriella Vas. Stable periodic solutions for Nazarenko's equation. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3257-3281. doi: 10.3934/cpaa.2020144
References:
[1]

Y. Cao, Multiexistence of slowly oscillating periodic solutions for differential delay equations, SIAM J. Math. Anal., 26 (1995), 436-445.  doi: 10.1137/0526022.

[2]

Y. Cao, Uniqueness of periodic solution for differential delay equations, J. Differ. Equ., 128 (1996), 46-57.  doi: 10.1006/jdeq.1996.0088.

[3]

J. L. Kaplan and J. A. Yorke, On the stability of a periodic solution of a differential delay equation, SIAM J. Math. Anal., 6 (1975), 268-282.  doi: 10.1137/0506028.

[4]

B. Kennedy and E. Stumpf, Multiple slowly oscillating periodic solutions for $x' (t) = f(x(t- 1))$ with negative feedback, Ann. Polon. Math., 118 (2016), 113-140.  doi: 10.4064/ap3899-10-2016.

[5]

I. Kubiaczyk and S. H. Saker, Oscillation and stability in nonlinear delay differential equations of population dynamics, Math. Comput. Model., 35 (2002), 295-301.  doi: 10.1016/S0895-7177(01)00166-2.

[6] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993. 
[7]

E. Liz and G. Röst, Dichotomy results for delay differential equations with negative Schwarzian derivative, Nonlinear Anal. Real World Appl., 11 (2010), 1422-1430.  doi: 10.1016/j.nonrwa.2009.02.030.

[8]

J. Mallet-Paret and G. R. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, J. Differ. Equ., 125 (1996), 441-489.  doi: 10.1006/jdeq.1996.0037.

[9]

V. G. Nazarenko, Influence of delay on auto-oscillations in cell populations, Biofisika, 21 (1976), 352-356. 

[10]

R. D. Nussbaum, A global bifurcation theorem with applications to functional differential equations, J. Funct. Anal., 19 (1975), 319-338.  doi: 10.1016/0022-1236(75)90061-0.

[11]

R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl., 101 (1974), 263-306.  doi: 10.1007/BF02417109.

[12]

R. D. Nussbaum, The range of periods of periodic solutions of $x' (t) = - \alpha f(x(t- 1))$, J. Math. Anal. Appl., 58 (1977), 280-292.  doi: 10.1016/0022-247X(77)90206-2.

[13]

R. D. Nussbaum, Uniqueness and nonuniqueness for periodic solutions of $x'(t) = -g(x(t -1))$, J. Differ. Equ., 34 (1979), 25-54.  doi: 10.1016/0022-0396(79)90016-0.

[14]

S. Ruan, Delay differential equations in single species dynamics, in Delay differential equations and applications (eds. O. Arino, M. L. Hbid and E. Ait Dads), NATO Sci. Ser. Ⅱ Math. Phys. Chem., Vol. 205, Springer, Dordrecht, (2006), 477–517. doi: 10.1007/1-4020-3647-7_11.

[15]

S. H. Saker and J. O. Alzabut, Existence of periodic solutions, global attractivity and oscillation of impulsive delay population model, Nonlinear Anal. Real World Appl., 8 (2007), 1029-1039.  doi: 10.1016/j.nonrwa.2006.06.001.

[16]

Y. Song and Y. Peng, Periodic solutions of a nonautonomous periodic model of population with continuous and discrete time, J. Comput. Appl. Math., 188 (2006), 256-264.  doi: 10.1016/j.cam.2005.04.017.

[17]

Y. SongJ. Wei and M. Han, Local and global Hopf bifurcation in a delayed hematopoiesis model, Int. J. Bifurcation Chaos Appl. Sci. Eng., 14 (2004), 3909-3919.  doi: 10.1142/S0218127404011697.

[18]

H. O. Walther, Contracting return maps for some delay differential equations, in Topics in Functional Differential and Difference Equations (Lisbon, 1999), Fields Inst. Commun., Vol. 29, American Mathematical Society, Providence, RI, (2001), 349–360.

[19]

Q. Wang, J. Wen, S. Qiu and C. Guo, Numerical oscillations for first-order nonlinear delay differential equations in a hematopoiesis model, Adv. Differ. Equ., (2013), 17. doi: 10.1186/1687-1847-2013-163.

[20]

J. Wu, Symmetric functional-differential equations and neural networks with memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.  doi: 10.1090/S0002-9947-98-02083-2.

show all references

References:
[1]

Y. Cao, Multiexistence of slowly oscillating periodic solutions for differential delay equations, SIAM J. Math. Anal., 26 (1995), 436-445.  doi: 10.1137/0526022.

[2]

Y. Cao, Uniqueness of periodic solution for differential delay equations, J. Differ. Equ., 128 (1996), 46-57.  doi: 10.1006/jdeq.1996.0088.

[3]

J. L. Kaplan and J. A. Yorke, On the stability of a periodic solution of a differential delay equation, SIAM J. Math. Anal., 6 (1975), 268-282.  doi: 10.1137/0506028.

[4]

B. Kennedy and E. Stumpf, Multiple slowly oscillating periodic solutions for $x' (t) = f(x(t- 1))$ with negative feedback, Ann. Polon. Math., 118 (2016), 113-140.  doi: 10.4064/ap3899-10-2016.

[5]

I. Kubiaczyk and S. H. Saker, Oscillation and stability in nonlinear delay differential equations of population dynamics, Math. Comput. Model., 35 (2002), 295-301.  doi: 10.1016/S0895-7177(01)00166-2.

[6] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993. 
[7]

E. Liz and G. Röst, Dichotomy results for delay differential equations with negative Schwarzian derivative, Nonlinear Anal. Real World Appl., 11 (2010), 1422-1430.  doi: 10.1016/j.nonrwa.2009.02.030.

[8]

J. Mallet-Paret and G. R. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, J. Differ. Equ., 125 (1996), 441-489.  doi: 10.1006/jdeq.1996.0037.

[9]

V. G. Nazarenko, Influence of delay on auto-oscillations in cell populations, Biofisika, 21 (1976), 352-356. 

[10]

R. D. Nussbaum, A global bifurcation theorem with applications to functional differential equations, J. Funct. Anal., 19 (1975), 319-338.  doi: 10.1016/0022-1236(75)90061-0.

[11]

R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl., 101 (1974), 263-306.  doi: 10.1007/BF02417109.

[12]

R. D. Nussbaum, The range of periods of periodic solutions of $x' (t) = - \alpha f(x(t- 1))$, J. Math. Anal. Appl., 58 (1977), 280-292.  doi: 10.1016/0022-247X(77)90206-2.

[13]

R. D. Nussbaum, Uniqueness and nonuniqueness for periodic solutions of $x'(t) = -g(x(t -1))$, J. Differ. Equ., 34 (1979), 25-54.  doi: 10.1016/0022-0396(79)90016-0.

[14]

S. Ruan, Delay differential equations in single species dynamics, in Delay differential equations and applications (eds. O. Arino, M. L. Hbid and E. Ait Dads), NATO Sci. Ser. Ⅱ Math. Phys. Chem., Vol. 205, Springer, Dordrecht, (2006), 477–517. doi: 10.1007/1-4020-3647-7_11.

[15]

S. H. Saker and J. O. Alzabut, Existence of periodic solutions, global attractivity and oscillation of impulsive delay population model, Nonlinear Anal. Real World Appl., 8 (2007), 1029-1039.  doi: 10.1016/j.nonrwa.2006.06.001.

[16]

Y. Song and Y. Peng, Periodic solutions of a nonautonomous periodic model of population with continuous and discrete time, J. Comput. Appl. Math., 188 (2006), 256-264.  doi: 10.1016/j.cam.2005.04.017.

[17]

Y. SongJ. Wei and M. Han, Local and global Hopf bifurcation in a delayed hematopoiesis model, Int. J. Bifurcation Chaos Appl. Sci. Eng., 14 (2004), 3909-3919.  doi: 10.1142/S0218127404011697.

[18]

H. O. Walther, Contracting return maps for some delay differential equations, in Topics in Functional Differential and Difference Equations (Lisbon, 1999), Fields Inst. Commun., Vol. 29, American Mathematical Society, Providence, RI, (2001), 349–360.

[19]

Q. Wang, J. Wen, S. Qiu and C. Guo, Numerical oscillations for first-order nonlinear delay differential equations in a hematopoiesis model, Adv. Differ. Equ., (2013), 17. doi: 10.1186/1687-1847-2013-163.

[20]

J. Wu, Symmetric functional-differential equations and neural networks with memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.  doi: 10.1090/S0002-9947-98-02083-2.

Figure 1.  The plot of $ f $ for $ p = 1 $, $ q = 4, $ $ r = 1.5 $ and $ n = 10 $
Figure 2.  An element of $ \mathcal{N}(A,B,\beta,\varepsilon) $
Figure 3.  Upper and lower estimates for the SOP solution $ \bar{x} $ of (1.4) if $ p = 2.8 $, $ q = 6, $ $ r = 1.3 $, $ \tau = 5 $ and $ n = 350 $. For these parameters, $ |\bar{x}(t)-v(t)|<0.54 $ for all $ t\in[0,\bar{\omega}] $
Table 1.  A few parameters for which Theorem 1.1 holds
$ p= $ $ q= $ $ r= $ $ n= $ $ \tau\geq $
2.8 6 1.3 19 5.16
2.8 6.9 0.9 25 2.41
2.8 6.9 0.9 2 23.68
1.9 4.2 0.8 20 3.88
0.7 1.3 0.7 30 8.84
1.9 6.9 0.8 15 8.16
6.6 9.3 0.4 10 2.63
3 5.3 1.3 15 9.71
8.8 5.9 0.5 20 8.52
9 6.4 0.4 5 6.62
9 6.4 0.4 2 16.54
$ p= $ $ q= $ $ r= $ $ n= $ $ \tau\geq $
2.8 6 1.3 19 5.16
2.8 6.9 0.9 25 2.41
2.8 6.9 0.9 2 23.68
1.9 4.2 0.8 20 3.88
0.7 1.3 0.7 30 8.84
1.9 6.9 0.8 15 8.16
6.6 9.3 0.4 10 2.63
3 5.3 1.3 15 9.71
8.8 5.9 0.5 20 8.52
9 6.4 0.4 5 6.62
9 6.4 0.4 2 16.54
[1]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003

[2]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[3]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[4]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[5]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[6]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[7]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[8]

Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2147-2172. doi: 10.3934/dcdsb.2021127

[9]

Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906

[10]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[11]

Qi Yao, Linshan Wang, Yangfan Wang. Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4727-4743. doi: 10.3934/dcdsb.2020310

[12]

A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373

[13]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[14]

Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109

[15]

Teresa Faria, José J. Oliveira. On stability for impulsive delay differential equations and application to a periodic Lasota-Wazewska model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2451-2472. doi: 10.3934/dcdsb.2016055

[16]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations and Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[17]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[18]

Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883

[19]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[20]

Ningning Ye, Zengyun Hu, Zhidong Teng. Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1361-1384. doi: 10.3934/cpaa.2022022

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (184)
  • HTML views (86)
  • Cited by (0)

Other articles
by authors

[Back to Top]