-
Previous Article
Asymptotic profiles of steady states for a diffusive SIS epidemic model with spontaneous infection and a logistic source
- CPAA Home
- This Issue
-
Next Article
Disconjugacy conditions and spectrum structure of clamped beam equations with two parameters
Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces
Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany |
We prove a low regularity local well-posedness result for the Maxwell-Klein-Gordon system in three space dimensions for data in Fourier - Lebesgue spaces $ \widehat{H}^{s,r} $, where $ \|f\|_{\widehat{H}^{s,r}} = \|\langle \xi \rangle^s \widehat{f}(\xi)\|_{\widehat{L}^{r'}} $, $ \frac{1}{r}+\frac{1}{r'} = 1 $. The assumed regularity for the data is almost optimal with respect to scaling as $ r \to 1 $. This closes the gap between what is known in the case $ r = 2 $, namely $ s > \frac{3}{4} $, and the critical value $ s_c = \frac{1}{2} $ with respect to scaling.
References:
[1] |
P. d'Ancona, D. Foschi and S. Selberg,
Null structure and almost optimal local regularity of the Maxwell-Dirac system, Amer. J. Math., 132 (2010), 771-839.
doi: 10.1353/ajm.0.0118. |
[2] |
P. d'Ancona, D. Foschi and S. Selberg,
Atlas of products for wave-Sobolev spaces in $\mathbb {R}^{1+3}$, Trans. Amer. Math. Soc., 364 (2012), 31-63.
doi: 10.1090/S0002-9947-2011-05250-5. |
[3] |
S. Cuccagna,
On the local existence for the Maxwell-Klein-Gordon system in $\mathbb{R}^{3+1}$, Commun. Partial Differ. Equ., 24 (1999), 851-867.
doi: 10.1080/03605309908821449. |
[4] |
M. Czubak and N. Pikula,
Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge, Commun. Pure Appl. Anal., 13 (2014), 1669-1683.
doi: 10.3934/cpaa.2014.13.1669. |
[5] |
D. Foschi and S. Klainerman,
Bilinear space-time estimates for homogeneous wave equations, Ann. Sci. Ec. Norm. Super., 33 (2000), 211-274.
doi: 10.1016/S0012-9593(00)00109-9. |
[6] |
V. Grigoryan and A. Nahmod,
Almost critical well-posedness for nonlinear wave equations with $Q_{\mu \nu}$ null forms in 2D, Math. Res. Lett., 21 (2014), 313-332.
doi: 10.4310/MRL.2014.v21.n2.a9. |
[7] |
A. Grünrock,
An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Notices, 61 (2004), 3287-3308.
doi: 10.1155/S1073792804140981. |
[8] |
A. Grünrock,
On the wave equation with quadratic nonlinearities in three space dimensions, J. Hyperbolic Differ. Equ., 8 (2011), 1-8.
doi: 10.1142/S0219891611002305. |
[9] |
A. Grünrock and L. Vega,
Local well-posedness for the modified KdV equation in almost critical $\widehat{H^{r, s}}$ -spaces, Trans. Amer. Math. Soc., 361 (2009), 5681-5694.
doi: 10.1090/S0002-9947-09-04611-X. |
[10] |
M. Keel, T. Roy and T. Tao,
Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm, Discrete Contin. Dyn. Syst., 30 (2011), 573-621.
doi: 10.3934/dcds.2011.30.573. |
[11] |
S. Klainerman and M. Machedon,
On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.
doi: 10.1215/S0012-7094-94-07402-4. |
[12] |
S. Klainerman and S. Selberg,
Bilinear estimates and applications to nonlinear problems, Commun. Contemp. Math., 4 (2002), 223-295.
doi: 10.1142/S0219199702000634. |
[13] |
M. Machedon and J. Sterbenz,
Almost optimal local well-posedness for the (3+1)-dimensional Maxwell-Klein-Gordon equations, J. Amer. Math. Soc., 17 (2004), 297-359.
doi: 10.1090/S0894-0347-03-00445-4. |
[14] |
H. Pecher, Local well-posedness for low regularity data for the higher-dimensional Maxwell-Klein-Gordon system in Lorenz gauge, J. Math. Phys., 59 (2018), 101503.
doi: 10.1063/1.5035408. |
[15] |
H. Pecher, Low regularity local well-posedness for the (N+1)-dimensional Maxwell-Klein-Gordon equation in Lorenz gauge, preprint, arXiv: 1705.00599.
doi: 10.3934/cpaa.2016034. |
[16] |
H. Pecher,
Low regularity local well-posedness for the Maxwell-Klein-Gordon equations in Lorenz gauge, Adv. Differ. Equ., 19 (2014), 359-386.
|
[17] |
S. Selberg,
Almost optimal local well-posedness of the Maxwell-Klein-Gordon equations in 1+4 dimensions, Commun. Partial Differ. Equ., 27 (2002), 1183-1227.
doi: 10.1081/PDE-120004899. |
[18] |
S. Selberg and A. Tesfahun,
Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Commun. Partial Differ. Equ., 35 (2010), 1029-105.
doi: 10.1080/03605301003717100. |
[19] |
T. Tao,
Multilinear weighted convolutions of $L^2$-functions, and applications to non-linear dispersive equations, Amer. J. Math., 123 (2001), 839-908.
|
show all references
References:
[1] |
P. d'Ancona, D. Foschi and S. Selberg,
Null structure and almost optimal local regularity of the Maxwell-Dirac system, Amer. J. Math., 132 (2010), 771-839.
doi: 10.1353/ajm.0.0118. |
[2] |
P. d'Ancona, D. Foschi and S. Selberg,
Atlas of products for wave-Sobolev spaces in $\mathbb {R}^{1+3}$, Trans. Amer. Math. Soc., 364 (2012), 31-63.
doi: 10.1090/S0002-9947-2011-05250-5. |
[3] |
S. Cuccagna,
On the local existence for the Maxwell-Klein-Gordon system in $\mathbb{R}^{3+1}$, Commun. Partial Differ. Equ., 24 (1999), 851-867.
doi: 10.1080/03605309908821449. |
[4] |
M. Czubak and N. Pikula,
Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge, Commun. Pure Appl. Anal., 13 (2014), 1669-1683.
doi: 10.3934/cpaa.2014.13.1669. |
[5] |
D. Foschi and S. Klainerman,
Bilinear space-time estimates for homogeneous wave equations, Ann. Sci. Ec. Norm. Super., 33 (2000), 211-274.
doi: 10.1016/S0012-9593(00)00109-9. |
[6] |
V. Grigoryan and A. Nahmod,
Almost critical well-posedness for nonlinear wave equations with $Q_{\mu \nu}$ null forms in 2D, Math. Res. Lett., 21 (2014), 313-332.
doi: 10.4310/MRL.2014.v21.n2.a9. |
[7] |
A. Grünrock,
An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Notices, 61 (2004), 3287-3308.
doi: 10.1155/S1073792804140981. |
[8] |
A. Grünrock,
On the wave equation with quadratic nonlinearities in three space dimensions, J. Hyperbolic Differ. Equ., 8 (2011), 1-8.
doi: 10.1142/S0219891611002305. |
[9] |
A. Grünrock and L. Vega,
Local well-posedness for the modified KdV equation in almost critical $\widehat{H^{r, s}}$ -spaces, Trans. Amer. Math. Soc., 361 (2009), 5681-5694.
doi: 10.1090/S0002-9947-09-04611-X. |
[10] |
M. Keel, T. Roy and T. Tao,
Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm, Discrete Contin. Dyn. Syst., 30 (2011), 573-621.
doi: 10.3934/dcds.2011.30.573. |
[11] |
S. Klainerman and M. Machedon,
On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.
doi: 10.1215/S0012-7094-94-07402-4. |
[12] |
S. Klainerman and S. Selberg,
Bilinear estimates and applications to nonlinear problems, Commun. Contemp. Math., 4 (2002), 223-295.
doi: 10.1142/S0219199702000634. |
[13] |
M. Machedon and J. Sterbenz,
Almost optimal local well-posedness for the (3+1)-dimensional Maxwell-Klein-Gordon equations, J. Amer. Math. Soc., 17 (2004), 297-359.
doi: 10.1090/S0894-0347-03-00445-4. |
[14] |
H. Pecher, Local well-posedness for low regularity data for the higher-dimensional Maxwell-Klein-Gordon system in Lorenz gauge, J. Math. Phys., 59 (2018), 101503.
doi: 10.1063/1.5035408. |
[15] |
H. Pecher, Low regularity local well-posedness for the (N+1)-dimensional Maxwell-Klein-Gordon equation in Lorenz gauge, preprint, arXiv: 1705.00599.
doi: 10.3934/cpaa.2016034. |
[16] |
H. Pecher,
Low regularity local well-posedness for the Maxwell-Klein-Gordon equations in Lorenz gauge, Adv. Differ. Equ., 19 (2014), 359-386.
|
[17] |
S. Selberg,
Almost optimal local well-posedness of the Maxwell-Klein-Gordon equations in 1+4 dimensions, Commun. Partial Differ. Equ., 27 (2002), 1183-1227.
doi: 10.1081/PDE-120004899. |
[18] |
S. Selberg and A. Tesfahun,
Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Commun. Partial Differ. Equ., 35 (2010), 1029-105.
doi: 10.1080/03605301003717100. |
[19] |
T. Tao,
Multilinear weighted convolutions of $L^2$-functions, and applications to non-linear dispersive equations, Amer. J. Math., 123 (2001), 839-908.
|
[1] |
M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573 |
[2] |
Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669 |
[3] |
Hartmut Pecher. Improved well-posedness results for the Maxwell-Klein-Gordon system in 2D. Communications on Pure and Applied Analysis, 2021, 20 (9) : 2965-2989. doi: 10.3934/cpaa.2021091 |
[4] |
Hartmut Pecher. Local well-posedness for the Klein-Gordon-Zakharov system in 3D. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1707-1736. doi: 10.3934/dcds.2020338 |
[5] |
Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061 |
[6] |
Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008 |
[7] |
Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061 |
[8] |
Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036 |
[9] |
Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081 |
[10] |
Radhia Ghanmi, Tarek Saanouni. Well-posedness issues for some critical coupled non-linear Klein-Gordon equations. Communications on Pure and Applied Analysis, 2019, 18 (2) : 603-623. doi: 10.3934/cpaa.2019030 |
[11] |
Hartmut Pecher. Low regularity solutions for the (2+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2203-2219. doi: 10.3934/cpaa.2016034 |
[12] |
Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic and Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005 |
[13] |
Yuan Xu, Fujun Zhou, Weihua Gong. Global Well-posedness and Optimal Decay Rate of the Quasi-static Incompressible Navier–Stokes–Fourier–Maxwell–Poisson System. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1537-1565. doi: 10.3934/cpaa.2022028 |
[14] |
E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $ \mathbb{R}^+ $. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156 |
[15] |
Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 |
[16] |
Pietro d’Avenia, Lorenzo Pisani, Gaetano Siciliano. Klein-Gordon-Maxwell systems in a bounded domain. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 135-149. doi: 10.3934/dcds.2010.26.135 |
[17] |
Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097 |
[18] |
Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271 |
[19] |
Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029 |
[20] |
Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]