July  2020, 19(7): 3597-3612. doi: 10.3934/cpaa.2020157

Property of solutions for elliptic equation involving the higher-order fractional Laplacian in $ \mathbb{R}^n_+ $

1. 

School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, 710129, China

2. 

Department of Mathematics, Yeshiva University, New York, 10033, USA

3. 

Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

4. 

College of Mathematics and Systems Sciences, Shandong University of Science and Technology, Qingdao, 266590, China

*Corresponding author

Received  June 2019 Revised  January 2020 Published  April 2020

Fund Project: M. Yu was supported by National Natural Science Foundation of China (Grant No. 11801446, Grant No. 11971385), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ1037, Grant No. 2019JM-275); X. Zhang was supported by National Natural Science Foundation of China (Grant No. 11671111, 11871177); B. Zhang was supported by National Natural Science Foundation of China (Grant No. 11871199), Heilongjiang Province Postdoctoral Startup Foundation (LBH-Q18109), and the Introduction and Cultivation Project of Young and Innovative Talents in Universities of Shandong Province

In this paper, we consider the following equation with the higher-order fractional Laplacian
$ (-\Delta)^s $
for
$ s = m+\frac{\alpha}{2} $
:
$ \begin{equation*} (-\Delta)^{s} u(x) = f(u(x)), \qquad x\in\mathbb{R}^n_+, \end{equation*} $
where
$ m\in \mathbb{N}^* $
,
$ 0<\alpha<2 $
. By developing a narrow region principle in unbounded domain and establishing a equivalence of differential equation and integral equation, together with the method of moving planes, we deduce the monotonicity property of positive solutions and the Liouville theorem of nonnegative solutions.
Citation: Mei Yu, Xia Zhang, Binlin Zhang. Property of solutions for elliptic equation involving the higher-order fractional Laplacian in $ \mathbb{R}^n_+ $. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3597-3612. doi: 10.3934/cpaa.2020157
References:
[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2009.  doi: 10.1017/CBO9780511809781.
[2]

F. V. Atkinson and L. A. Peletier, Elliptic equations with nearly critical growth, J. Differ. Equ., 70 (1987), 349-365.  doi: 10.1016/0022-0396(87)90156-2.

[3] J. Bertoin, Lévy Processes, Cambridge Tracts in Mathmatics, Cambridge University Press, Cambridge, 1996. 
[4] G. M. BisciV. D. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.
[5]

J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.

[6]

H. Brézis and L. A. Peletier, Asymptotics for Elliptic Equations Involving Critical Growth, Report No.03, Mathematical Institute, Leiden University, 1988.

[7]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.

[8]

L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.

[9]

G. CaristiL. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.  doi: 10.1007/s00032-008-0090-3.

[10]

W. ChenY. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.

[11]

W. Chen, Y. Li and P. Ma, The fractional Laplacian, in press.

[12]

T. Cheng, Monotonicity and symmetry of solutions to fractional Laplacian equation, Discrete Contin. Dyn. Syst., 37 (2017), 3587-3599.  doi: 10.3934/dcds.2017154.

[13]

C. V. Coffman, Uniqueness of the ground state solution for $ $\bigtriangleup$ u-u+u^3$ and a variational characterization of other solutions, Arch. Ration. Mech. Anal., 46 (1972), 81-95.  doi: 10.1007/BF00250684.

[14]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in Mathematical Foundation of Turbulent Viscous Flows, Springer, Berlin, Heidelberg, (2006), 1–43. doi: 10.1007/11545989_1.

[15]

X. Cui and M. Yu, Non-existence of positive solutions for a higher order fractional equation, Discrete Contin. Dyn. Syst., 39 (2019), 1379-1387.  doi: 10.3934/dcds.2019059.

[16]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[17]

P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math., 16 (2014), 1-24.  doi: 10.1142/S0219199713500235.

[18]

D. G. FigueiredoP. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl., 61 (1982), 41-63. 

[19]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differ. Equ., 6 (1981), 883-901.  doi: 10.1080/03605308108820196.

[20]

H. G. Kaper and M. K. Kwong, Uniqueness of non-negative solutions of a class of semilinear elliptic equations, in Nonlinear Diffusion Equations and Their Equilibrium States II, vol. 13, (1988), 1–17. doi: 10.1007/978-1-4613-9608-6_1.

[21]

M. K. Kwong, Uniqueness of positive solutions of $ $\bigtriangleup$ u-u+u^p = 0$ in $\mathbb{R}^n$, Arch. Ration. Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.

[22]

N. S. Landkof, Foundations of modern potential theory, Springer–Verlag, Berlin, Heidelberg, New York, 1972.

[23]

K. Mcleod and J. Serrin, Uniqueness of positive radial solutions of $ $\bigtriangleup$ u+f(u)=0$ in $\mathbb{R}^n$, Arch. Ration. Mech. Anal., 99 (1987), 115-145.  doi: 10.1007/BF00275874.

[24]

L. A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in $\mathbb{R}^n$, J. Differ. Equ., 61 (1986), 380-397.  doi: 10.1016/0022-0396(86)90112-9.

[25]

A. Quaas and A. Xia, Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differ. Equ., 52 (2014), 641-659.  doi: 10.1007/s00526-014-0727-8.

[26]

V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range inthraction, Commun. Nonlinear Sci. Numer. Simul., 11 (2006), 885-889.  doi: 10.1016/j.cnsns.2006.03.005.

[27]

M. XiangB. Zhang and V. Rădulescu, Existence of solutions for perturbed fractional $p$–Laplacian equations, J. Differ. Equ., 260 (2016), 1392-1413.  doi: 10.1016/j.jde.2015.09.028.

[28]

X. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var. Partial Differ. Equ., 46 (2013), 75-95.  doi: 10.1007/s00526-011-0474-z.

[29]

L. Zhan and M. Yu, A Liouville theorem for a class of fractional systems in $\mathbb{R}^n_+$, J. Differ. Equ., 263 (2017), 6025-6065.  doi: 10.1016/j.jde.2017.07.009.

[30]

L. ZhangC. LiW. Chen and T. Cheng, A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$, Discrete Contin. Dyn. Syst., 36 (2016), 1721-1736.  doi: 10.3934/dcds.2016.36.1721.

show all references

References:
[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2009.  doi: 10.1017/CBO9780511809781.
[2]

F. V. Atkinson and L. A. Peletier, Elliptic equations with nearly critical growth, J. Differ. Equ., 70 (1987), 349-365.  doi: 10.1016/0022-0396(87)90156-2.

[3] J. Bertoin, Lévy Processes, Cambridge Tracts in Mathmatics, Cambridge University Press, Cambridge, 1996. 
[4] G. M. BisciV. D. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.
[5]

J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.

[6]

H. Brézis and L. A. Peletier, Asymptotics for Elliptic Equations Involving Critical Growth, Report No.03, Mathematical Institute, Leiden University, 1988.

[7]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.

[8]

L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.

[9]

G. CaristiL. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.  doi: 10.1007/s00032-008-0090-3.

[10]

W. ChenY. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.

[11]

W. Chen, Y. Li and P. Ma, The fractional Laplacian, in press.

[12]

T. Cheng, Monotonicity and symmetry of solutions to fractional Laplacian equation, Discrete Contin. Dyn. Syst., 37 (2017), 3587-3599.  doi: 10.3934/dcds.2017154.

[13]

C. V. Coffman, Uniqueness of the ground state solution for $ $\bigtriangleup$ u-u+u^3$ and a variational characterization of other solutions, Arch. Ration. Mech. Anal., 46 (1972), 81-95.  doi: 10.1007/BF00250684.

[14]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in Mathematical Foundation of Turbulent Viscous Flows, Springer, Berlin, Heidelberg, (2006), 1–43. doi: 10.1007/11545989_1.

[15]

X. Cui and M. Yu, Non-existence of positive solutions for a higher order fractional equation, Discrete Contin. Dyn. Syst., 39 (2019), 1379-1387.  doi: 10.3934/dcds.2019059.

[16]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[17]

P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math., 16 (2014), 1-24.  doi: 10.1142/S0219199713500235.

[18]

D. G. FigueiredoP. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl., 61 (1982), 41-63. 

[19]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differ. Equ., 6 (1981), 883-901.  doi: 10.1080/03605308108820196.

[20]

H. G. Kaper and M. K. Kwong, Uniqueness of non-negative solutions of a class of semilinear elliptic equations, in Nonlinear Diffusion Equations and Their Equilibrium States II, vol. 13, (1988), 1–17. doi: 10.1007/978-1-4613-9608-6_1.

[21]

M. K. Kwong, Uniqueness of positive solutions of $ $\bigtriangleup$ u-u+u^p = 0$ in $\mathbb{R}^n$, Arch. Ration. Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.

[22]

N. S. Landkof, Foundations of modern potential theory, Springer–Verlag, Berlin, Heidelberg, New York, 1972.

[23]

K. Mcleod and J. Serrin, Uniqueness of positive radial solutions of $ $\bigtriangleup$ u+f(u)=0$ in $\mathbb{R}^n$, Arch. Ration. Mech. Anal., 99 (1987), 115-145.  doi: 10.1007/BF00275874.

[24]

L. A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in $\mathbb{R}^n$, J. Differ. Equ., 61 (1986), 380-397.  doi: 10.1016/0022-0396(86)90112-9.

[25]

A. Quaas and A. Xia, Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differ. Equ., 52 (2014), 641-659.  doi: 10.1007/s00526-014-0727-8.

[26]

V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range inthraction, Commun. Nonlinear Sci. Numer. Simul., 11 (2006), 885-889.  doi: 10.1016/j.cnsns.2006.03.005.

[27]

M. XiangB. Zhang and V. Rădulescu, Existence of solutions for perturbed fractional $p$–Laplacian equations, J. Differ. Equ., 260 (2016), 1392-1413.  doi: 10.1016/j.jde.2015.09.028.

[28]

X. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var. Partial Differ. Equ., 46 (2013), 75-95.  doi: 10.1007/s00526-011-0474-z.

[29]

L. Zhan and M. Yu, A Liouville theorem for a class of fractional systems in $\mathbb{R}^n_+$, J. Differ. Equ., 263 (2017), 6025-6065.  doi: 10.1016/j.jde.2017.07.009.

[30]

L. ZhangC. LiW. Chen and T. Cheng, A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$, Discrete Contin. Dyn. Syst., 36 (2016), 1721-1736.  doi: 10.3934/dcds.2016.36.1721.

[1]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[2]

Daomin Cao, Guolin Qin. Liouville type theorems for fractional and higher-order fractional systems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2269-2283. doi: 10.3934/dcds.2020361

[3]

Kui Li, Zhitao Zhang. Liouville-type theorem for higher-order Hardy-Hénon system. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3851-3869. doi: 10.3934/cpaa.2021134

[4]

Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

[5]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[6]

Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236

[7]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[8]

Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317

[9]

Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure and Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807

[10]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1871-1897. doi: 10.3934/dcdss.2020462

[12]

Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062

[13]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[14]

Xiaojun Zheng, Zhongdan Huan, Jun Liu. On the solvability of a semilinear higher-order elliptic problem for the vector field method in image registration. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022068

[15]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[16]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[17]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[18]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[19]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[20]

Xinmin Yang, Xiaoqi Yang, Kok Lay Teo. Higher-order symmetric duality in multiobjective programming with invexity. Journal of Industrial and Management Optimization, 2008, 4 (2) : 385-391. doi: 10.3934/jimo.2008.4.385

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (266)
  • HTML views (74)
  • Cited by (0)

Other articles
by authors

[Back to Top]