Advanced Search
Article Contents
Article Contents

Quantitative robustness of localized support vector machines

The work was partially supported by grant CH 291/3-1 of the Deutsche Forschungsgemeinschaft (DFG)
Abstract Full Text(HTML) Related Papers Cited by
  • The huge amount of available data nowadays is a challenge for kernel-based machine learning algorithms like SVMs with respect to runtime and storage capacities. Local approaches might help to relieve these issues and to improve statistical accuracy. It has already been shown that these local approaches are consistent and robust in a basic sense. This article refines the analysis of robustness properties towards the so-called influence function which expresses the differentiability of the learning method: We show that there is a differentiable dependency of our locally learned predictor on the underlying distribution. The assumptions of the proven theorems can be verified without knowing anything about this distribution. This makes the results interesting also from an applied point of view.

    Mathematics Subject Classification: Primary: 62G35, 68Q32.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.  doi: 10.2307/1990404.
    [2] R. B. Ash and  C. Doleans-DadeProbability and Measure Theory, Academic Press, an Diego, 2000. 
    [3] A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, Springer, New York, 2001. doi: 10.1007/978-1-4419-9096-9.
    [4] B. E. Boser, I. M. Guyon and V. N. Vapnik, A training algorithm for optimal margin classifiers, in Proceedings of The Fifth Annual Workshop on Computational Learning Theory, (1992), 144–152.
    [5] A. Christmann and I. Steinwart, On robust properties of convex risk minimization methods for pattern recognition, J. Mach. Learn. Res., 5 (2004), 1007-1034. 
    [6] A. ChristmannI. Steinwart and M. Hubert, Robust learning from bites for data mining, Comput. Stat. Data Anal., 52 (2007), 347-361.  doi: 10.1016/j.csda.2006.12.009.
    [7] A. Christmann and A. van Messem, Bouligand derivatives and robustness of support vector machines for regression, J. Mach. Learn. Res., 9 (2008), 915-936. 
    [8] A. ChristmannA. Van Messem and I. Steinwart, On consistency and robustness properties of support vector machines for heavy-tailed distributions, Stat. Interface, 2 (2009), 311-327.  doi: 10.4310/SII.2009.v2.n3.a5.
    [9] C. Cortes and V. Vapnik, Support-vector networks, Mach. learn., 20 (1995), 273-297. 
    [10] N. Cristianini and  J. Shawe-TaylorAn Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press, 2000. 
    [11] F. Cucker and  D. X. ZhouLearning Theory: An Approximation Theory Viewpoint, Cambridge University Press, 2007.  doi: 10.1017/CBO9780511618796.
    [12] Z. Denkowski, S. Mig$\acute{o}$rski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, New York, 2003. doi: 10.1007/978-1-4419-9158-4.
    [13] F. Dumpert and A. Christmann, Universal consistency and robustness of localized support vector machines, Neurocomputing, 315 (2018), 96-106. 
    [14] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience Publishers, New York, 1958.
    [15] R. Hable and A. Christmann, Robustness versus consistency in ill-posed classification and regression problems, in Classification and Data Mining (eds. A. Giusti, G. Ritter and M. Vichi), Springer, Berlin, (2013), 27–35.
    [16] F. R. Hampel, Contributions to the theory of robust estimation, Ph.D thesis, University of California, Berkeley, 1968
    [17] Y. Ma and G. Guo, Support Vector Machines Applications, Springer, New York, 2014.
    [18] B. Schölkopf and  A. J. SmolaLearning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT press, Cambridge, 2001. 
    [19] I. Steinwart and A. Christmann, Support Vector Machines, Springer, New York, 2008.
    [20] A. Van Messem and A. Christmann, A review on consistency and robustness properties of support vector machines for heavy-tailed distributions, Adv. Data Anal. Classif., 4 (2010), 199-220.  doi: 10.1007/s11634-010-0067-2.
    [21] Z. Wu, Compactly supported positive definite radial functions, Adv. Comput. Math., 4 (1995), 283-292.  doi: 10.1007/BF03177517.
  • 加载中

Article Metrics

HTML views(225) PDF downloads(213) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint