
-
Previous Article
Convergence of online pairwise regression learning with quadratic loss
- CPAA Home
- This Issue
-
Next Article
Learning rates for the kernel regularized regression with a differentiable strongly convex loss
Uncompactly supported density estimation with $ L^{1} $ risk
1. | Department of Applied Mathematics, Beijing University of Technology, Pingle Yuan 100, Beijing, 100124, China |
2. | School of Mathematics and Information Science, Weifang University, Weifang, Shandong, 261061, China |
The perfect achievements have been made for $ L^{p}\; (1\leq p<+\infty) $ risk estimation, when a density function has compact support. However, there does not exist $ L^{1} $ risk estimation for uncompactly supported densities in general. Motivated by the work of Juditsky & Lambert-Lacroix (A. Juditsky and S. Lambert-Lacroix, On minimax density estimation on $ \mathbb{R} $, Bernoulli, 10(2004), 187-220) and Goldenshluger & Lepski (A. Goldenshluger and O. Lepski, On adaptive minimax density estimation on $ \mathbb{R}^{d} $, Probab. Theory Relat. Fields., 159(2014), 479-543), we provide an adaptive estimate for a family of density functions not necessarily having compact supports in this paper.
References:
[1] |
L. Birgé,
On estimating a density using hellinger distance and some other strange facts, Probab. Theory Relat. Fields, 71 (1986), 271-291.
doi: 10.1007/BF00332312. |
[2] |
L. Birgé,
Model selection for density estimation with $L^2$-loss, Probab. Theory Relat. Fields, 158 (2014), 533-574.
doi: 10.1007/s00440-013-0488-x. |
[3] |
J. Bretagnolle and C. Huber,
Estimation des densites: risque minimax, Z Wahrscheinlichkeitstheorie Verw Geb., 47 (1979), 119-137.
doi: 10.1007/BF00535278. |
[4] |
K. K. Cao and Y. M. Liu, On the Reynaud-Bouret–Rivoiard–Tuleau-Malot problem, Int. J. Wavelets Multiresolut. Inform. Process., 16 (2018), 1850038.
doi: 10.1142/S0219691318500388. |
[5] |
L. Devroye and L. Györfi, Nonparametric Density Estimation: The $L^{1}$ View, Wiley, New York, 1985. |
[6] |
D. L. Donoho, I. M. Johnstone, G. Kerkyacharian and D. Picard,
Density estimation by wavelet thresholding, Ann. Statist., 24 (1996), 508-539.
doi: 10.1214/aos/1032894451. |
[7] |
E. Giné and R. Nickl, Mathematical foundations of infinite-dimensional statistics model, Cambridge university Press, Cambridge, 2015.
doi: 10.1017/CBO9781107337862.![]() ![]() ![]() |
[8] |
A. Goldenshluger and O. Lepski,
On adaptive minimax density estimation on $\mathbb{R}^{d}$, Probab. Theory Relat Fields, 159 (2014), 479-543.
doi: 10.1007/s00440-013-0512-1. |
[9] |
W. Härdle, G. Kerkyacharian, D. Picard and A. Tsybakov., Wavelets, Approximation and Statistical Applications, Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4612-2222-4. |
[10] |
A. Juditsky and S. Lambert-Lacroix,
On minimax density estimation on $\mathbb{R}$, Bernoulli, 10 (2004), 187-220.
doi: 10.3150/bj/1082380217. |
[11] |
G. Kerkyacharian and D. Picard,
Density estimation in Besov space, Statist. Probab. Lett., 13 (1992), 15-24.
doi: 10.1016/0167-7152(92)90231-S. |
[12] |
O. Lepski,
Multivariate estimation under sup-norm loss: oracle approach, adaption and independence structure, Ann. Statist., 41 (2013), 1005-1034.
doi: 10.1214/13-AOS1109. |
[13] |
P. Reynaud-Bouret, V. Rivoirard and C. Tuleau-Malot,
Adaptive density estimation: a curse of support?, J. Statist. Plan. Infer., 141 (2011), 115-139.
doi: 10.1016/j.jspi.2010.05.017. |
show all references
References:
[1] |
L. Birgé,
On estimating a density using hellinger distance and some other strange facts, Probab. Theory Relat. Fields, 71 (1986), 271-291.
doi: 10.1007/BF00332312. |
[2] |
L. Birgé,
Model selection for density estimation with $L^2$-loss, Probab. Theory Relat. Fields, 158 (2014), 533-574.
doi: 10.1007/s00440-013-0488-x. |
[3] |
J. Bretagnolle and C. Huber,
Estimation des densites: risque minimax, Z Wahrscheinlichkeitstheorie Verw Geb., 47 (1979), 119-137.
doi: 10.1007/BF00535278. |
[4] |
K. K. Cao and Y. M. Liu, On the Reynaud-Bouret–Rivoiard–Tuleau-Malot problem, Int. J. Wavelets Multiresolut. Inform. Process., 16 (2018), 1850038.
doi: 10.1142/S0219691318500388. |
[5] |
L. Devroye and L. Györfi, Nonparametric Density Estimation: The $L^{1}$ View, Wiley, New York, 1985. |
[6] |
D. L. Donoho, I. M. Johnstone, G. Kerkyacharian and D. Picard,
Density estimation by wavelet thresholding, Ann. Statist., 24 (1996), 508-539.
doi: 10.1214/aos/1032894451. |
[7] |
E. Giné and R. Nickl, Mathematical foundations of infinite-dimensional statistics model, Cambridge university Press, Cambridge, 2015.
doi: 10.1017/CBO9781107337862.![]() ![]() ![]() |
[8] |
A. Goldenshluger and O. Lepski,
On adaptive minimax density estimation on $\mathbb{R}^{d}$, Probab. Theory Relat Fields, 159 (2014), 479-543.
doi: 10.1007/s00440-013-0512-1. |
[9] |
W. Härdle, G. Kerkyacharian, D. Picard and A. Tsybakov., Wavelets, Approximation and Statistical Applications, Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4612-2222-4. |
[10] |
A. Juditsky and S. Lambert-Lacroix,
On minimax density estimation on $\mathbb{R}$, Bernoulli, 10 (2004), 187-220.
doi: 10.3150/bj/1082380217. |
[11] |
G. Kerkyacharian and D. Picard,
Density estimation in Besov space, Statist. Probab. Lett., 13 (1992), 15-24.
doi: 10.1016/0167-7152(92)90231-S. |
[12] |
O. Lepski,
Multivariate estimation under sup-norm loss: oracle approach, adaption and independence structure, Ann. Statist., 41 (2013), 1005-1034.
doi: 10.1214/13-AOS1109. |
[13] |
P. Reynaud-Bouret, V. Rivoirard and C. Tuleau-Malot,
Adaptive density estimation: a curse of support?, J. Statist. Plan. Infer., 141 (2011), 115-139.
doi: 10.1016/j.jspi.2010.05.017. |

[1] |
Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124 |
[2] |
Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021 |
[3] |
Hongyong Cui, Peter E. Kloeden, Wenqiang Zhao. Strong $ (L^2,L^\gamma\cap H_0^1) $-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension. Electronic Research Archive, 2020, 28 (3) : 1357-1374. doi: 10.3934/era.2020072 |
[4] |
Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022002 |
[5] |
Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅱ. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074 |
[6] |
Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅰ. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073 |
[7] |
Burak Ordin, Adil Bagirov, Ehsan Mohebi. An incremental nonsmooth optimization algorithm for clustering using $ L_1 $ and $ L_\infty $ norms. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2757-2779. doi: 10.3934/jimo.2019079 |
[8] |
Lidan Li, Hongwei Zhang, Liwei Zhang. Inverse quadratic programming problem with $ l_1 $ norm measure. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2425-2437. doi: 10.3934/jimo.2019061 |
[9] |
Monica Motta, Caterina Sartori. On ${\mathcal L}^1$ limit solutions in impulsive control. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1201-1218. doi: 10.3934/dcdss.2018068 |
[10] |
Yupeng Li, Wuchen Li, Guo Cao. Image segmentation via $ L_1 $ Monge-Kantorovich problem. Inverse Problems and Imaging, 2019, 13 (4) : 805-826. doi: 10.3934/ipi.2019037 |
[11] |
El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355 |
[12] |
Yusuke Ishigaki. On $ L^1 $ estimates of solutions of compressible viscoelastic system. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1835-1853. doi: 10.3934/dcds.2021174 |
[13] |
Lingyan Cheng, Ruinan Li, Liming Wu. Exponential convergence in the Wasserstein metric $ W_1 $ for one dimensional diffusions. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5131-5148. doi: 10.3934/dcds.2020222 |
[14] |
Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. Upper bounds on the length function for covering codes with covering radius $ R $ and codimension $ tR+1 $. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021074 |
[15] |
Niklas Sapountzoglou, Aleksandra Zimmermann. Well-posedness of renormalized solutions for a stochastic $ p $-Laplace equation with $ L^1 $-initial data. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2341-2376. doi: 10.3934/dcds.2020367 |
[16] |
Tuan Anh Dao, Michael Reissig. $ L^1 $ estimates for oscillating integrals and their applications to semi-linear models with $ \sigma $-evolution like structural damping. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5431-5463. doi: 10.3934/dcds.2019222 |
[17] |
Niklas Sapountzoglou, Aleksandra Zimmermann. Renormalized solutions for stochastic $ p $-Laplace equations with $ L^1 $-initial data: The case of multiplicative noise. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022041 |
[18] |
Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129 |
[19] |
Irena Lasiecka, Buddhika Priyasad, Roberto Triggiani. Uniform stabilization of Boussinesq systems in critical $ \mathbf{L}^q $-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 4071-4117. doi: 10.3934/dcdsb.2020187 |
[20] |
Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]