August  2020, 19(8): 4097-4109. doi: 10.3934/cpaa.2020182

Representations for the inverses of certain operators

1. 

Lucian Blaga University of Sibiu, Department of Mathematics and Informatics, Str. Dr. I. Ratiu, No.5-7, RO-550012 Sibiu, Romania

2. 

Technical University of Cluj-Napoca, Faculty of Automation and Computer Science, Str. Memorandumului nr. 28 Cluj-Napoca, Romania

3. 

Babes-Bolyai University, FSEGA, Department of Statistics-Forecasts-Mathematics, Cluj-Napoca, Romania

* Corresponding author

Received  August 2019 Revised  November 2019 Published  May 2020

Fund Project: The first author is supported by Lucian Blaga University of Sibiu & Hasso Plattner Foundation research grants LBUS-IRG-2019-05

Inverses of certain positive linear operators have been investigated in several recent papers, in connection with problems like decomposition of classical operators, representation of Lagrange-type operators, asymptotic formulas of Voronovskaja type. Motivated by such researches, in this paper we give some representations for the inverses of certain positive linear operators, as Bernstein, Beta, Bernstein - Durrmeyer, genuine Bernstein - Durrmeyer and Kantorovich operators. Moreover, some Voronovskaja type formulas for the inverses of these operators are obtained. Several techniques are used in order to get such results.

Citation: Ana-Maria Acu, Madalina Dancs, Voichiţa Adriana Radu. Representations for the inverses of certain operators. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4097-4109. doi: 10.3934/cpaa.2020182
References:
[1]

U. Abel and M. Ivan, Asymptotic expansion of the multivariate Bernstein polynomials on a simplex, Approx. Theory Appl., 16 (2000), 85-93.   Google Scholar

[2]

F. Alda and B. I. P. Rubinstein, The Bernstein mechanism: function release under differential privacy, in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), 1705–1711. Google Scholar

[3]

H. Berens and Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights, in Approximation Theory and Functional Analysis (eds. C. K. Chui), Boston, Acad. Press, (1991), 25–46.  Google Scholar

[4]

H. Berens and Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights: The cases $p = 1$ and $p = \infty$, in Approximation, Interpolation and Summation (eds. S. Baron and D. Leviatan), Israel Math. Conf. Proc., 4, Ramat Gan: Bar-Ilan Univ., (1991), 51–62.  Google Scholar

[5]

W. Chen, On the modified Bernstein-Durrmeyer operator, in Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China, 1987. Google Scholar

[6]

M. M. Derriennic, De La Vallée Poussin and Bernstein-type operators, in Approximation Theory (eds. M. W. Müller, M. Felten and D. H. Mache), Proc. IDoMAT 95, Mathematical Research, Vol. 86, Akademic Verlag, Berlin, (1995), 71–84.  Google Scholar

[7]

H. H. Gonska, On the composition and decomposition of positive linear operators, in Approximation Theory and its Applications (Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 31. Kiev. 1999). Kiev: Natsional. Akad. Nauk Ukraini, Inst. Mat. (2000), 161–180.  Google Scholar

[8]

H. Gonska, M. Heilmann, A. Lupaș and I. Rașa, On the composition and decomposition of positive linear operators Ⅲ: A non-trivial decomposition of the Bernstein operator, preprint, arXiv: 1204.2723v1. doi: 10.1080/01630563.2014.951772.  Google Scholar

[9]

H. H. Gonska and I. Rașa, On the composition and decomposition of positive linear operators (Ⅱ), Stud. Sci. Math. Hung., 47 (2010), 948-461.  doi: 10.1556/SScMath.2009.1144.  Google Scholar

[10]

H. Gonska, I. Rașa and E. D. Stănilă, Beta Operators with Jacobi Weights, in Constructive Theory of Functions (eds. K. Ivanov, G. Nikolov and R. Uluchev), Sozopol 2013, 99–112, Prof. Marin Drinov Academic Publishing House, Sofia, 2014.  Google Scholar

[11]

H. H. GonskaI. Rașa and E. D. Stănilă, Lagrange-type operators associated with $U^Q_n$, Publications de l'Institut Matheématique, Nouvelle série, 96 (2014), 159-168.  doi: 10.2298/PIM1410159G.  Google Scholar

[12]

H. Gonska and R. Păltănea, Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions, Czechoslovak Math. J., 60 (2010), 783-799.  doi: 10.1007/s10587-010-0049-8.  Google Scholar

[13]

H. Gonska and R. Păltănea, Quantitative convergence theorems for a class of Bernstein-Durrmeyer operators preserving linear functions, Ukrainian Math. J., 62 (2010), 913-922.  doi: 10.1007/s11253-010-0413-8.  Google Scholar

[14]

T. N. T. Goodman and A. Sharma, A modified Bernstein-Schoenberg operator, in Proc. Conf. Constructive Theory of Functions (eds. Bl. Sendov et al.), Varna 1987, Publ. House Bulg. Acad. Sci., Sofia, (1988), 166–173.  Google Scholar

[15]

T. N. T. Goodman and A. Sharma, A Bernstein type operator on the simplex, Math. Balkanica, 5 (1991), 129-145.   Google Scholar

[16]

M. Heilmann, F. Nasaireh and I. Rașa, Complements to Voronovskaja's formula, in Mathematics and Computing (eds. D. Ghosh et al.), Chapter 11, Springer Proceedings in Mathematics & Statistics 253, Springer Nature Singapore Pte Ltd., 2018. doi: 10.1007/978-981-13-2095-8.  Google Scholar

[17]

M. Heilmann, F. Nasaireh and I. Rașa, Beta and related operators revisited, in Proceedings of Constructive Theory of Functions (eds. K. Ivanov, G. Nikolov and R. Uluchev), Sozopol, (2016), 175–185. Prof. Marin Drinov Academic Publishing House, Sofia, 2018,175–185.  Google Scholar

[18]

M. Heilmann and I. Rașa, On the decomposition of Bernstein operators, Numer. Funct. Anal. Optim., 36 (2015), 72-85.  doi: 10.1080/01630563.2014.951772.  Google Scholar

[19]

L. V. Kantorovich, Sur certains developpements suivant les polynômes de la forme de S. Bernstein Ⅰ, Ⅱ, Dokl. Akad. Nauk. SSSR, (1930), 563–568,595–600. Google Scholar

[20]

A. Lupaș and L. Lupaș, Polynomials of binomial type and approximation operators, Stud. Univ. Babeș-Bolyai Math., 32 (1987), 61-69.   Google Scholar

[21]

A. Lupaș, The approximation by means of some linear positive operators, in Approximation Theory (eds. M. W. Müller, M. Felten and D.H. Mache), Proc. IDoMAT 95, Methematical Research, Vol. 86,201–229, Academic Verlag, Berlin, 1995.  Google Scholar

[22]

G. Mühlbach, Verallgemeinerungen der Bernstein- und der Lagrangepolynome, Bemerkungen zu einer Klasse linearer Polynomoperatoren von D. D. Stancu (Rev. Roumaine Math. Pure Appl.), 15 (1970), 1235–1252.  Google Scholar

[23]

G. Mühlbach, Rekursionsformeln für die zentralen Momente der Polya- und der Beta-Verteilung, Metrika, 19 (1972), 171-177.  doi: 10.1007/BF01893292.  Google Scholar

[24]

F. Nasaireh and I. Rașa, Another Look at Voronovskaja Type Formulas, J. Math. Inequal., 12 (2018), 95-105.  doi: 10.7153/jmi-2018-12-07.  Google Scholar

[25]

F. Nasaireh, Voronovskaja-type formulas and applications, General Math., 25 (2017), 37-43.   Google Scholar

[26]

T. NeerA. M. Acu and P. N. Agrawal, Bezier variant of genuine-Durrmeyer type operators based on Polya distribution, Carpathian J. Math., 33 (2017), 73-86.   Google Scholar

[27]

R. Păltănea, A class of Durrmeyer type operators preserving linear functions, Ann. Tiberiu Popoviciu Sem. Funct. Equat. Approxim. Convex. (Cluj-Napoca), 5 (2007), 109–117. Google Scholar

[28]

R. Păltănea, Sur un opérateur polynomial defini sur l'ensemble des fonctions intégrables, in Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca), (1983), 101–106.  Google Scholar

[29]

G. Szegö, Orthogonal Polynomials, American Mathematical Society, Colloquium Publication, Vol. 23, 1939.  Google Scholar

[30]

T. Vladislav and I. Rașa, Analiză Numerică. Elemente introductive, Editura Tehnică, Bucureti, 1997. (in Romanian) Google Scholar

[31]

T. Vladislav, I. Rașa, Analiză Numerică. Aproximare, problema lui Cauchy abstractă, proiectori Altomare, Editura Tehnică, Bucureti, 1999. (in Romanian) Google Scholar

[32]

D. X. Zhou and K. Jetter, Approximation with polynomial kernels and SVM classifiers, Adv. Comput. Math., 25 (2006), 323-344.  doi: 10.1007/s10444-004-7206-2.  Google Scholar

show all references

References:
[1]

U. Abel and M. Ivan, Asymptotic expansion of the multivariate Bernstein polynomials on a simplex, Approx. Theory Appl., 16 (2000), 85-93.   Google Scholar

[2]

F. Alda and B. I. P. Rubinstein, The Bernstein mechanism: function release under differential privacy, in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), 1705–1711. Google Scholar

[3]

H. Berens and Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights, in Approximation Theory and Functional Analysis (eds. C. K. Chui), Boston, Acad. Press, (1991), 25–46.  Google Scholar

[4]

H. Berens and Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights: The cases $p = 1$ and $p = \infty$, in Approximation, Interpolation and Summation (eds. S. Baron and D. Leviatan), Israel Math. Conf. Proc., 4, Ramat Gan: Bar-Ilan Univ., (1991), 51–62.  Google Scholar

[5]

W. Chen, On the modified Bernstein-Durrmeyer operator, in Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China, 1987. Google Scholar

[6]

M. M. Derriennic, De La Vallée Poussin and Bernstein-type operators, in Approximation Theory (eds. M. W. Müller, M. Felten and D. H. Mache), Proc. IDoMAT 95, Mathematical Research, Vol. 86, Akademic Verlag, Berlin, (1995), 71–84.  Google Scholar

[7]

H. H. Gonska, On the composition and decomposition of positive linear operators, in Approximation Theory and its Applications (Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 31. Kiev. 1999). Kiev: Natsional. Akad. Nauk Ukraini, Inst. Mat. (2000), 161–180.  Google Scholar

[8]

H. Gonska, M. Heilmann, A. Lupaș and I. Rașa, On the composition and decomposition of positive linear operators Ⅲ: A non-trivial decomposition of the Bernstein operator, preprint, arXiv: 1204.2723v1. doi: 10.1080/01630563.2014.951772.  Google Scholar

[9]

H. H. Gonska and I. Rașa, On the composition and decomposition of positive linear operators (Ⅱ), Stud. Sci. Math. Hung., 47 (2010), 948-461.  doi: 10.1556/SScMath.2009.1144.  Google Scholar

[10]

H. Gonska, I. Rașa and E. D. Stănilă, Beta Operators with Jacobi Weights, in Constructive Theory of Functions (eds. K. Ivanov, G. Nikolov and R. Uluchev), Sozopol 2013, 99–112, Prof. Marin Drinov Academic Publishing House, Sofia, 2014.  Google Scholar

[11]

H. H. GonskaI. Rașa and E. D. Stănilă, Lagrange-type operators associated with $U^Q_n$, Publications de l'Institut Matheématique, Nouvelle série, 96 (2014), 159-168.  doi: 10.2298/PIM1410159G.  Google Scholar

[12]

H. Gonska and R. Păltănea, Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions, Czechoslovak Math. J., 60 (2010), 783-799.  doi: 10.1007/s10587-010-0049-8.  Google Scholar

[13]

H. Gonska and R. Păltănea, Quantitative convergence theorems for a class of Bernstein-Durrmeyer operators preserving linear functions, Ukrainian Math. J., 62 (2010), 913-922.  doi: 10.1007/s11253-010-0413-8.  Google Scholar

[14]

T. N. T. Goodman and A. Sharma, A modified Bernstein-Schoenberg operator, in Proc. Conf. Constructive Theory of Functions (eds. Bl. Sendov et al.), Varna 1987, Publ. House Bulg. Acad. Sci., Sofia, (1988), 166–173.  Google Scholar

[15]

T. N. T. Goodman and A. Sharma, A Bernstein type operator on the simplex, Math. Balkanica, 5 (1991), 129-145.   Google Scholar

[16]

M. Heilmann, F. Nasaireh and I. Rașa, Complements to Voronovskaja's formula, in Mathematics and Computing (eds. D. Ghosh et al.), Chapter 11, Springer Proceedings in Mathematics & Statistics 253, Springer Nature Singapore Pte Ltd., 2018. doi: 10.1007/978-981-13-2095-8.  Google Scholar

[17]

M. Heilmann, F. Nasaireh and I. Rașa, Beta and related operators revisited, in Proceedings of Constructive Theory of Functions (eds. K. Ivanov, G. Nikolov and R. Uluchev), Sozopol, (2016), 175–185. Prof. Marin Drinov Academic Publishing House, Sofia, 2018,175–185.  Google Scholar

[18]

M. Heilmann and I. Rașa, On the decomposition of Bernstein operators, Numer. Funct. Anal. Optim., 36 (2015), 72-85.  doi: 10.1080/01630563.2014.951772.  Google Scholar

[19]

L. V. Kantorovich, Sur certains developpements suivant les polynômes de la forme de S. Bernstein Ⅰ, Ⅱ, Dokl. Akad. Nauk. SSSR, (1930), 563–568,595–600. Google Scholar

[20]

A. Lupaș and L. Lupaș, Polynomials of binomial type and approximation operators, Stud. Univ. Babeș-Bolyai Math., 32 (1987), 61-69.   Google Scholar

[21]

A. Lupaș, The approximation by means of some linear positive operators, in Approximation Theory (eds. M. W. Müller, M. Felten and D.H. Mache), Proc. IDoMAT 95, Methematical Research, Vol. 86,201–229, Academic Verlag, Berlin, 1995.  Google Scholar

[22]

G. Mühlbach, Verallgemeinerungen der Bernstein- und der Lagrangepolynome, Bemerkungen zu einer Klasse linearer Polynomoperatoren von D. D. Stancu (Rev. Roumaine Math. Pure Appl.), 15 (1970), 1235–1252.  Google Scholar

[23]

G. Mühlbach, Rekursionsformeln für die zentralen Momente der Polya- und der Beta-Verteilung, Metrika, 19 (1972), 171-177.  doi: 10.1007/BF01893292.  Google Scholar

[24]

F. Nasaireh and I. Rașa, Another Look at Voronovskaja Type Formulas, J. Math. Inequal., 12 (2018), 95-105.  doi: 10.7153/jmi-2018-12-07.  Google Scholar

[25]

F. Nasaireh, Voronovskaja-type formulas and applications, General Math., 25 (2017), 37-43.   Google Scholar

[26]

T. NeerA. M. Acu and P. N. Agrawal, Bezier variant of genuine-Durrmeyer type operators based on Polya distribution, Carpathian J. Math., 33 (2017), 73-86.   Google Scholar

[27]

R. Păltănea, A class of Durrmeyer type operators preserving linear functions, Ann. Tiberiu Popoviciu Sem. Funct. Equat. Approxim. Convex. (Cluj-Napoca), 5 (2007), 109–117. Google Scholar

[28]

R. Păltănea, Sur un opérateur polynomial defini sur l'ensemble des fonctions intégrables, in Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca), (1983), 101–106.  Google Scholar

[29]

G. Szegö, Orthogonal Polynomials, American Mathematical Society, Colloquium Publication, Vol. 23, 1939.  Google Scholar

[30]

T. Vladislav and I. Rașa, Analiză Numerică. Elemente introductive, Editura Tehnică, Bucureti, 1997. (in Romanian) Google Scholar

[31]

T. Vladislav, I. Rașa, Analiză Numerică. Aproximare, problema lui Cauchy abstractă, proiectori Altomare, Editura Tehnică, Bucureti, 1999. (in Romanian) Google Scholar

[32]

D. X. Zhou and K. Jetter, Approximation with polynomial kernels and SVM classifiers, Adv. Comput. Math., 25 (2006), 323-344.  doi: 10.1007/s10444-004-7206-2.  Google Scholar

[1]

Danilo Costarelli, Gianluca Vinti. Asymptotic expansions and Voronovskaja type theorems for the multivariate neural network operators. Mathematical Foundations of Computing, 2020, 3 (1) : 41-50. doi: 10.3934/mfc.2020004

[2]

Paul Loya and Jinsung Park. On gluing formulas for the spectral invariants of Dirac type operators. Electronic Research Announcements, 2005, 11: 1-11.

[3]

Purshottam Narain Agrawal, Şule Yüksel Güngör, Abhishek Kumar. Better degree of approximation by modified Bernstein-Durrmeyer type operators. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021024

[4]

Jeffrey R. L. Webb. Positive solutions of nonlinear equations via comparison with linear operators. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5507-5519. doi: 10.3934/dcds.2013.33.5507

[5]

Francesco Altomare, Mirella Cappelletti Montano, Vita Leonessa. On the positive semigroups generated by Fleming-Viot type differential operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 323-340. doi: 10.3934/cpaa.2019017

[6]

Antonio Avantaggiati, Paola Loreti. Hypercontractivity, Hopf-Lax type formulas, Ornstein-Uhlenbeck operators (II). Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 525-545. doi: 10.3934/dcdss.2009.2.525

[7]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[8]

Ling-Xiong Han, Wen-Hui Li, Feng Qi. Approximation by multivariate Baskakov–Kantorovich operators in Orlicz spaces. Electronic Research Archive, 2020, 28 (2) : 721-738. doi: 10.3934/era.2020037

[9]

Danilo Costarelli. Preface: Special issue on approximation by linear and nonlinear operators with applications. Part I. Mathematical Foundations of Computing, 2021, 4 (4) : i-ii. doi: 10.3934/mfc.2021028

[10]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[11]

Lucian Coroianu, Danilo Costarelli, Sorin G. Gal, Gianluca Vinti. Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4213-4225. doi: 10.3934/cpaa.2020189

[12]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure & Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[13]

Dorota Bors, Andrzej Skowron, Stanisław Walczak. Systems described by Volterra type integral operators. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2401-2416. doi: 10.3934/dcdsb.2014.19.2401

[14]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[15]

Harun Karsli. On multidimensional Urysohn type generalized sampling operators. Mathematical Foundations of Computing, 2021, 4 (4) : 271-280. doi: 10.3934/mfc.2021015

[16]

Lucian Coroianu, Sorin G. Gal. New approximation properties of the Bernstein max-min operators and Bernstein max-product operators. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021034

[17]

Nemat Nyamoradi, Kaimin Teng. Existence of solutions for a Kirchhoff-type-nonlocal operators of elliptic type. Communications on Pure & Applied Analysis, 2015, 14 (2) : 361-371. doi: 10.3934/cpaa.2015.14.361

[18]

Lanzhe Liu. Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators. Communications on Pure & Applied Analysis, 2015, 14 (2) : 627-636. doi: 10.3934/cpaa.2015.14.627

[19]

Ismail Kombe. On the nonexistence of positive solutions to doubly nonlinear equations for Baouendi-Grushin operators. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5167-5176. doi: 10.3934/dcds.2013.33.5167

[20]

Maxime Breden, Laurent Desvillettes, Jean-Philippe Lessard. Rigorous numerics for nonlinear operators with tridiagonal dominant linear part. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4765-4789. doi: 10.3934/dcds.2015.35.4765

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (241)
  • HTML views (68)
  • Cited by (0)

[Back to Top]