
-
Previous Article
Kernel-based maximum correntropy criterion with gradient descent method
- CPAA Home
- This Issue
-
Next Article
First jump time in simulation of sampling trajectories of affine jump-diffusions driven by $ \alpha $-stable white noise
Computing eigenpairs of two-parameter Sturm-Liouville systems using the bivariate sinc-Gauss formula
1. | Department of Mathematics, College of Arts and Sciences, Najran University, Najran, Saudi Arabia |
2. | Institute of Mathematics, University of Lübeck, D-23562 Lübeck, Germany |
The use of sampling methods in computing eigenpairs of two-parameter boundary value problems is extremely rare. As far as we know, there are only two studies up to now using the bivariate version of the classical and regularized sampling series. These series have a slow convergence rate. In this paper, we use the bivariate sinc-Gauss sampling formula that was proposed in [
References:
[1] |
A. AlAzemi, F. AlAzemi and A. Boumenir,
The approximation of eigencurves by sampling, Sampl. Theory Signal Image Process., 12 (2013), 127-138.
|
[2] |
M. H. Annaby and R. M. Asharabi,
Computing eigenvalues of boundary-value problems using sinc-Gaussian method, Sampl. Theory Signal Image Process., 7 (2008), 293-311.
|
[3] |
M. H. Annaby and R. M. Asharabi,
Computing eigenvalues of Sturm-Liouville problems by Hermite interpolations, Numer. Algor., 60 (2012), 355-367.
doi: 10.1007/s11075-011-9518-x. |
[4] |
R. M. Asharabi, A Hermite-Gauss technique for approximating eigenvalues of regular Sturm-Liouville problems, J. Inequal. Appl., (2016), Art. 154.
doi: 10.1186/s13660-016-1098-9. |
[5] |
R. M. Asharabi, Generalized bivariate Hermite-Gauss sampling, Comput. Appl. Math., 38 (2019), 29.
doi: 10.1007/s40314-019-0802-z. |
[6] |
R. M. Asharabi and J. Prestin,
On two-dimensional classical and Hermite sampling, IMA J. Numer. Anal., 36 (2016), 851-871.
doi: 10.1093/imanum/drv022. |
[7] |
R. M. Asharabi and M. Tharwat,
The use of the Generalized sin-Gaussian sampling for numerically computing eigenvalues of Dirac system, Electron. Trans. Numer. Anal., 48 (2018), 373-386.
doi: 10.1553/etna_vol48s373. |
[8] |
F. V. Atkinson and A. B. Mingarelli, Multiparameter Eigenvalue Problems, Sturm-Liouville Theory, Vol. 2, CRC Press, Boca Raton, 2011. |
[9] |
P. A. Binding and P. J. Browne,
Asymptotics of eigencurves for second order ordinary differential equations Ⅰ, J. Differ. Equ., 88 (1990), 30-45.
doi: 10.1016/0022-0396(90)90107-Z. |
[10] |
P. A. Binding and P. J. Browne,
Asymptotics of eigencurves for second order ordinary differential equations Ⅱ, J. Differ. Equ., 89 (1991), 224-243.
doi: 10.1016/0022-0396(91)90120-X. |
[11] |
P. A. Binding and H. Volkmer,
Eigencurves for two-parameter Sturm-Liouville equations, SIAM Rev., 38 (1996), 27-48.
doi: 10.1137/1038002. |
[12] |
P. A. Binding and B. A. Watson, An inverse nodal problem for two-parameter Sturm-Liouville systems, Inverse Probl., 25 (2009), Art. 085005.
doi: 10.1088/0266-5611/25/8/085005. |
[13] |
A. Boumenir and B. Chanane,
Eigenvalues of Sturm-Liouville systems using sampling theory, Appl. Anal., 62 (1996), 323-334.
doi: 10.1080/00036819608840486. |
[14] |
B. Chanane,
Computation of eigenvalues of Sturm-Liouville problems with parameter dependent boundary conditions using reularized sampling method, Math. Comput., 74 (2005), 1793-1801.
doi: 10.1090/S0025-5718-05-01717-5. |
[15] |
B. Chanane and A. Boucherif, Computation of the eigenpairs of two-parameter Sturm-Liouville problems using the regularized sampling method, Abstr. Appl. Anal., (2014), Art. 695303.
doi: 10.1155/2014/695303. |
[16] |
M. Faierman,
The completeness and expansion theorems associated with the multiparameter eigenvalue problem in ordinary differential equations, J. Differ. Equ., 5 (1969), 197-213.
doi: 10.1016/0022-0396(69)90112-0. |
[17] |
M. R. Sampford,
Some inequalities on Mill's ratio and related functions, Ann. Math. Stat., 24 (1953), 130-132.
doi: 10.1214/aoms/1177729093. |
show all references
References:
[1] |
A. AlAzemi, F. AlAzemi and A. Boumenir,
The approximation of eigencurves by sampling, Sampl. Theory Signal Image Process., 12 (2013), 127-138.
|
[2] |
M. H. Annaby and R. M. Asharabi,
Computing eigenvalues of boundary-value problems using sinc-Gaussian method, Sampl. Theory Signal Image Process., 7 (2008), 293-311.
|
[3] |
M. H. Annaby and R. M. Asharabi,
Computing eigenvalues of Sturm-Liouville problems by Hermite interpolations, Numer. Algor., 60 (2012), 355-367.
doi: 10.1007/s11075-011-9518-x. |
[4] |
R. M. Asharabi, A Hermite-Gauss technique for approximating eigenvalues of regular Sturm-Liouville problems, J. Inequal. Appl., (2016), Art. 154.
doi: 10.1186/s13660-016-1098-9. |
[5] |
R. M. Asharabi, Generalized bivariate Hermite-Gauss sampling, Comput. Appl. Math., 38 (2019), 29.
doi: 10.1007/s40314-019-0802-z. |
[6] |
R. M. Asharabi and J. Prestin,
On two-dimensional classical and Hermite sampling, IMA J. Numer. Anal., 36 (2016), 851-871.
doi: 10.1093/imanum/drv022. |
[7] |
R. M. Asharabi and M. Tharwat,
The use of the Generalized sin-Gaussian sampling for numerically computing eigenvalues of Dirac system, Electron. Trans. Numer. Anal., 48 (2018), 373-386.
doi: 10.1553/etna_vol48s373. |
[8] |
F. V. Atkinson and A. B. Mingarelli, Multiparameter Eigenvalue Problems, Sturm-Liouville Theory, Vol. 2, CRC Press, Boca Raton, 2011. |
[9] |
P. A. Binding and P. J. Browne,
Asymptotics of eigencurves for second order ordinary differential equations Ⅰ, J. Differ. Equ., 88 (1990), 30-45.
doi: 10.1016/0022-0396(90)90107-Z. |
[10] |
P. A. Binding and P. J. Browne,
Asymptotics of eigencurves for second order ordinary differential equations Ⅱ, J. Differ. Equ., 89 (1991), 224-243.
doi: 10.1016/0022-0396(91)90120-X. |
[11] |
P. A. Binding and H. Volkmer,
Eigencurves for two-parameter Sturm-Liouville equations, SIAM Rev., 38 (1996), 27-48.
doi: 10.1137/1038002. |
[12] |
P. A. Binding and B. A. Watson, An inverse nodal problem for two-parameter Sturm-Liouville systems, Inverse Probl., 25 (2009), Art. 085005.
doi: 10.1088/0266-5611/25/8/085005. |
[13] |
A. Boumenir and B. Chanane,
Eigenvalues of Sturm-Liouville systems using sampling theory, Appl. Anal., 62 (1996), 323-334.
doi: 10.1080/00036819608840486. |
[14] |
B. Chanane,
Computation of eigenvalues of Sturm-Liouville problems with parameter dependent boundary conditions using reularized sampling method, Math. Comput., 74 (2005), 1793-1801.
doi: 10.1090/S0025-5718-05-01717-5. |
[15] |
B. Chanane and A. Boucherif, Computation of the eigenpairs of two-parameter Sturm-Liouville problems using the regularized sampling method, Abstr. Appl. Anal., (2014), Art. 695303.
doi: 10.1155/2014/695303. |
[16] |
M. Faierman,
The completeness and expansion theorems associated with the multiparameter eigenvalue problem in ordinary differential equations, J. Differ. Equ., 5 (1969), 197-213.
doi: 10.1016/0022-0396(69)90112-0. |
[17] |
M. R. Sampford,
Some inequalities on Mill's ratio and related functions, Ann. Math. Stat., 24 (1953), 130-132.
doi: 10.1214/aoms/1177729093. |




Methods | Region of approximation | Convergence rate |
WKS sampling | ||
Regularized sampling | ||
Sinc-Gaussian sampling |
Methods | Region of approximation | Convergence rate |
WKS sampling | ||
Regularized sampling | ||
Sinc-Gaussian sampling |
Bivariate WKS sampling | ||
1 | 1.813797507802172 | 1.513239555736101 |
2 | 3.627597850186581 | 3.487076569018237 |
3 | 5.441403076170987 | 5.348799863878748 |
4 | 7.255208077727408 | 7.186073252549332 |
5 | 9.069006371615362 | 9.013757735420938 |
6 | 10.88280054723645 | 10.836602869705539 |
Bivariate sinc-Gauss sampling | ||
1 | 1.813799364683959 | 1.513231023664942 |
2 | 3.627598728958227 | 3.487043523167927 |
3 | 5.441398093112097 | 5.348720707354780 |
4 | 7.255197457187725 | 7.185950886348564 |
5 | 7.255197457187725 | 9.013695321137181 |
6 | 10.882796185506988 | 10.83675471755794 |
Bivariate WKS sampling | ||
1 | 1.813797507802172 | 1.513239555736101 |
2 | 3.627597850186581 | 3.487076569018237 |
3 | 5.441403076170987 | 5.348799863878748 |
4 | 7.255208077727408 | 7.186073252549332 |
5 | 9.069006371615362 | 9.013757735420938 |
6 | 10.88280054723645 | 10.836602869705539 |
Bivariate sinc-Gauss sampling | ||
1 | 1.813799364683959 | 1.513231023664942 |
2 | 3.627598728958227 | 3.487043523167927 |
3 | 5.441398093112097 | 5.348720707354780 |
4 | 7.255197457187725 | 7.185950886348564 |
5 | 7.255197457187725 | 9.013695321137181 |
6 | 10.882796185506988 | 10.83675471755794 |
Bivariate WKS sampling | Bivariate sinc-Gauss sampling | ||
1 | 8.73082 |
1.00333 |
6.94810 |
2 | 3.30572 |
5.91952 |
1.23606 |
3 | 7.93134 |
4.50801 |
3.57188 |
4 | 1.22826 |
2.82605 |
2.22197 |
5 | 6.31407 |
2.54946 |
2.27273 |
6 | 1.51911 |
2.33596 |
7.64573 |
Bivariate WKS sampling | Bivariate sinc-Gauss sampling | ||
1 | 8.73082 |
1.00333 |
6.94810 |
2 | 3.30572 |
5.91952 |
1.23606 |
3 | 7.93134 |
4.50801 |
3.57188 |
4 | 1.22826 |
2.82605 |
2.22197 |
5 | 6.31407 |
2.54946 |
2.27273 |
6 | 1.51911 |
2.33596 |
7.64573 |
{ |
||
Bivariate WKS sampling | ||
1 | 1.359821568195881 | 1.584365124779384 |
2 | 2.294869574533618 | 3.950449753437753 |
3 | 5.235270180088456 | 2.129614898841256 |
4 | 6.477462750322421 | 4.683407147326487 |
5 | 7.667060430768335 | 6.932768257873039 |
6 | 8.825101408478323 | 9.106626719982193 |
Bivariate sinc-Gauss sampling | ||
1 | 1.359811348447286 | 1.584379611568847 |
2 | 2.294859272608290 | 3.950445447061610 |
3 | 5.235258286227501 | 2.129611255383138 |
4 | 6.477390507161662 | 4.683473685527605 |
5 | 7.666946848415846 | 6.932950168963926 |
6 | 8.825213824551480 | 9.106473269299752 |
{ |
||
Bivariate WKS sampling | ||
1 | 1.359821568195881 | 1.584365124779384 |
2 | 2.294869574533618 | 3.950449753437753 |
3 | 5.235270180088456 | 2.129614898841256 |
4 | 6.477462750322421 | 4.683407147326487 |
5 | 7.667060430768335 | 6.932768257873039 |
6 | 8.825101408478323 | 9.106626719982193 |
Bivariate sinc-Gauss sampling | ||
1 | 1.359811348447286 | 1.584379611568847 |
2 | 2.294859272608290 | 3.950445447061610 |
3 | 5.235258286227501 | 2.129611255383138 |
4 | 6.477390507161662 | 4.683473685527605 |
5 | 7.666946848415846 | 6.932950168963926 |
6 | 8.825213824551480 | 9.106473269299752 |
Bivariate WKS sampling | Bivariate sinc-Gauss sampling | |
1 | 1.77230 |
6.16607 |
2 | 1.11696 |
8.90886 |
3 | 1.24318 |
7.90168 |
4 | 9.82270 |
1.60926 |
5 | 2.14480 |
2.13712 |
6 | 1.90214 |
8.33743 |
Bivariate WKS sampling | Bivariate sinc-Gauss sampling | |
1 | 1.77230 |
6.16607 |
2 | 1.11696 |
8.90886 |
3 | 1.24318 |
7.90168 |
4 | 9.82270 |
1.60926 |
5 | 2.14480 |
2.13712 |
6 | 1.90214 |
8.33743 |
{ |
||
[1ex] | Bivariate WKS sampling | |
1 | 0.515656277786066 | 0.762177530812667 |
2 | 2.051784932534724 | 2.114071060975086 |
3 | 3.478736174942723 | 3.516120586250193 |
4 | 4.893280857549082 | 4.919999452785837 |
5 | 6.303637655607843 | 6.324376642474745 |
6 | 7.712016456380302 | 7.728978003793143 |
7 | 9.119198704295004 | 9.133705129467295 |
8 | 10.525522861700562 | 10.538515646451458 |
Bivariate sinc-Gauss sampling | ||
1 | 0.515671212590693 | 0.762173604088073 |
2 | 2.051799490194234 | 2.114068514591409 |
3 | 3.478721556147922 | 3.516123605356794 |
4 | 4.893200190982574 | 4.920011111879944 |
5 | 6.303486384409280 | 6.324392419791860 |
6 | 7.711851697945461 | 7.728986314987891 |
7 | 9.119176716920121 | 9.133693454689087 |
8 | 10.525875454418745 | 10.538468065160703 |
{ |
||
[1ex] | Bivariate WKS sampling | |
1 | 0.515656277786066 | 0.762177530812667 |
2 | 2.051784932534724 | 2.114071060975086 |
3 | 3.478736174942723 | 3.516120586250193 |
4 | 4.893280857549082 | 4.919999452785837 |
5 | 6.303637655607843 | 6.324376642474745 |
6 | 7.712016456380302 | 7.728978003793143 |
7 | 9.119198704295004 | 9.133705129467295 |
8 | 10.525522861700562 | 10.538515646451458 |
Bivariate sinc-Gauss sampling | ||
1 | 0.515671212590693 | 0.762173604088073 |
2 | 2.051799490194234 | 2.114068514591409 |
3 | 3.478721556147922 | 3.516123605356794 |
4 | 4.893200190982574 | 4.920011111879944 |
5 | 6.303486384409280 | 6.324392419791860 |
6 | 7.711851697945461 | 7.728986314987891 |
7 | 9.119176716920121 | 9.133693454689087 |
8 | 10.525875454418745 | 10.538468065160703 |
[1] |
Peter Howard, Alim Sukhtayev. The Maslov and Morse indices for Sturm-Liouville systems on the half-line. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 983-1012. doi: 10.3934/dcds.2020068 |
[2] |
Russell Johnson, Luca Zampogni. On the inverse Sturm-Liouville problem. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 405-428. doi: 10.3934/dcds.2007.18.405 |
[3] |
N. A. Chernyavskaya, L. A. Shuster. Spaces admissible for the Sturm-Liouville equation. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1023-1052. doi: 10.3934/cpaa.2018050 |
[4] |
Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems and Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004 |
[5] |
Guglielmo Feltrin. Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities. Communications on Pure and Applied Analysis, 2017, 16 (3) : 1083-1102. doi: 10.3934/cpaa.2017052 |
[6] |
Chuan-Fu Yang, Natalia Pavlovna Bondarenko, Xiao-Chuan Xu. An inverse problem for the Sturm-Liouville pencil with arbitrary entire functions in the boundary condition. Inverse Problems and Imaging, 2020, 14 (1) : 153-169. doi: 10.3934/ipi.2019068 |
[7] |
Elimhan N. Mahmudov. Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints. Journal of Industrial and Management Optimization, 2020, 16 (1) : 169-187. doi: 10.3934/jimo.2018145 |
[8] |
Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2503-2520. doi: 10.3934/jimo.2019066 |
[9] |
Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2417-2434. doi: 10.3934/dcdss.2020171 |
[10] |
Günter Leugering, Gisèle Mophou, Maryse Moutamal, Mahamadi Warma. Optimal control problems of parabolic fractional Sturm-Liouville equations in a star graph. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022015 |
[11] |
Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325 |
[12] |
Fengfeng Wang, Dansheng Yu, Bin Zhang. On approximation of Bernstein-Durrmeyer operators in movable interval. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022008 |
[13] |
Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243 |
[14] |
Lucian Coroianu, Sorin G. Gal. New approximation properties of the Bernstein max-min operators and Bernstein max-product operators. Mathematical Foundations of Computing, 2022, 5 (3) : 259-268. doi: 10.3934/mfc.2021034 |
[15] |
Purshottam Narain Agrawal, Şule Yüksel Güngör, Abhishek Kumar. Better degree of approximation by modified Bernstein-Durrmeyer type operators. Mathematical Foundations of Computing, 2022, 5 (2) : 75-92. doi: 10.3934/mfc.2021024 |
[16] |
Diogo A. Gomes, Gabriele Terrone. Bernstein estimates: weakly coupled systems and integral equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 861-883. doi: 10.3934/cpaa.2012.11.861 |
[17] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1121-1147. doi: 10.3934/dcdsb.2021083 |
[18] |
Lei Wang, Meijun Zhu. Liouville theorems on the upper half space. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5373-5381. doi: 10.3934/dcds.2020231 |
[19] |
Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249 |
[20] |
Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems and Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]