- Previous Article
- CPAA Home
- This Issue
-
Next Article
Degenerate coercive quasilinear elliptic equations with subcritical or critical exponents in $ \mathbb{R}^N $
Hardy inequalities for the fractional powers of the Grushin operator
1. | School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, China |
2. | Departamento de Matemática, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso, Chile |
3. | Department of Mathematics, Jianghan University, Wuhan, Hubei, 430056, China |
We establish uncertainty principles and Hardy inequalities for the fractional Grushin operator, which are reduced to those inequalities for the fractional generalized sublaplacian. The key ingredients to obtain them are an explicit integral representation and a ground state representation for the fractional powers of generalized sublaplacian.
References:
[1] |
R. Balhara, Hardy's inequality for the fractional powers of the Grushin operator, Proc. Indian Acad. Sci. (Math. Sci.), 129 (2019), 33.
doi: 10.1007/s12044-019-0471-2. |
[2] |
W. Beckner,
Pitt's inequality and the fractional Laplacian: sharp error estimates, Forum Math., 24 (2012), 177-209.
doi: 10.1515/form.2011.056. |
[3] |
O. Ciaurri, L. Roncal and S. Thangavelu,
Hardy-type inequalities for fractional powers of the Dunkl-Hermite operator, Proc. Edinb. Math. Soc., 61 (2018), 513-544.
doi: 10.1017/s0013091517000311. |
[4] |
M. Cowling and U. Haagerup,
Completely bounded multipliers of the Fourier algebra of simple Lie group of real rank one, Invent. Math., 96 (1989), 507-549.
doi: 10.1007/BF01393695. |
[5] |
G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, Vol. 28, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1982. |
[6] |
R. L. Frank, E. H. Lieb and R. Seiringer,
Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925-950.
doi: 10.1090/S0894-0347-07-00582-6. |
[7] |
I. W. Herbst,
Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$, Commun. Math. Phys., 53 (1977), 285-294.
|
[8] |
J. Huang,
A heat kernel version of Cowling-Price theorem for the Laguerre hypergroup, Proc. Indian Acad. Sci., 120 (2010), 73-81.
doi: 10.1007/s12044-010-0004-5. |
[9] |
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th edition, Elsevier Academic Press, Amsterdam, 2007. |
[10] |
L. Roncal and S. Thangavelu,
Hardy's inequality for fractional powers of the sublaplacian on the Heisenberg group, Adv. Math., 302 (2016), 106-158.
doi: 10.1016/j.aim.2016.07.010. |
[11] |
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Vol. 32, Princeton University Press, 2016. |
[12] |
K. Stempak,
An algebra associated with the generalized sublaplacian, Studia Math., 88 (1988), 245-256.
doi: 10.4064/sm-88-3-245-256. |
[13] |
K. Stempak,
Mean summability methods for Laguerre series, Trans. Amer. Math. Soc., 322 (1990), 671-690.
doi: 10.2307/2001720. |
[14] |
J. Tan and X. Yu,
Liouville type theorems for nonlinear elliptic equations on extended Grushin manifolds, J. Diff. Equa., 269 (2020), 523-541.
|
[15] |
S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Math. Notes, Vol. 42, Princeton University Press, Princeton, NJ, 1993. |
[16] |
S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progress in Mathematics, Vol. 159, Birkhäuser, Boston, MA, 1998.
doi: 10.1007/978-1-4612-1772-5. |
[17] |
S. Thangavelu, An Introduction to the Uncertainty Principle. Hardy's Theorem on Lie Groups, Progress in Mathematics, Vol. 217, Birkhäuser, Boston, MA, 2004.
doi: 10.1007/978-0-8176-8164-7. |
[18] |
F. G. Tricomi and A. Erdélyi,
The asymptotic expansion of a ratio of Gamma functions, Pacific J. Math., 1 (1951), 133-142.
|
[19] |
D. Yafaev,
Sharp constants in the Hardy–Rellich inequalities, J. Funct. Anal., 168 (1999), 121-144.
doi: 10.1006/jfan.1999.3462. |
show all references
References:
[1] |
R. Balhara, Hardy's inequality for the fractional powers of the Grushin operator, Proc. Indian Acad. Sci. (Math. Sci.), 129 (2019), 33.
doi: 10.1007/s12044-019-0471-2. |
[2] |
W. Beckner,
Pitt's inequality and the fractional Laplacian: sharp error estimates, Forum Math., 24 (2012), 177-209.
doi: 10.1515/form.2011.056. |
[3] |
O. Ciaurri, L. Roncal and S. Thangavelu,
Hardy-type inequalities for fractional powers of the Dunkl-Hermite operator, Proc. Edinb. Math. Soc., 61 (2018), 513-544.
doi: 10.1017/s0013091517000311. |
[4] |
M. Cowling and U. Haagerup,
Completely bounded multipliers of the Fourier algebra of simple Lie group of real rank one, Invent. Math., 96 (1989), 507-549.
doi: 10.1007/BF01393695. |
[5] |
G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, Vol. 28, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1982. |
[6] |
R. L. Frank, E. H. Lieb and R. Seiringer,
Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925-950.
doi: 10.1090/S0894-0347-07-00582-6. |
[7] |
I. W. Herbst,
Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$, Commun. Math. Phys., 53 (1977), 285-294.
|
[8] |
J. Huang,
A heat kernel version of Cowling-Price theorem for the Laguerre hypergroup, Proc. Indian Acad. Sci., 120 (2010), 73-81.
doi: 10.1007/s12044-010-0004-5. |
[9] |
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th edition, Elsevier Academic Press, Amsterdam, 2007. |
[10] |
L. Roncal and S. Thangavelu,
Hardy's inequality for fractional powers of the sublaplacian on the Heisenberg group, Adv. Math., 302 (2016), 106-158.
doi: 10.1016/j.aim.2016.07.010. |
[11] |
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Vol. 32, Princeton University Press, 2016. |
[12] |
K. Stempak,
An algebra associated with the generalized sublaplacian, Studia Math., 88 (1988), 245-256.
doi: 10.4064/sm-88-3-245-256. |
[13] |
K. Stempak,
Mean summability methods for Laguerre series, Trans. Amer. Math. Soc., 322 (1990), 671-690.
doi: 10.2307/2001720. |
[14] |
J. Tan and X. Yu,
Liouville type theorems for nonlinear elliptic equations on extended Grushin manifolds, J. Diff. Equa., 269 (2020), 523-541.
|
[15] |
S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Math. Notes, Vol. 42, Princeton University Press, Princeton, NJ, 1993. |
[16] |
S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progress in Mathematics, Vol. 159, Birkhäuser, Boston, MA, 1998.
doi: 10.1007/978-1-4612-1772-5. |
[17] |
S. Thangavelu, An Introduction to the Uncertainty Principle. Hardy's Theorem on Lie Groups, Progress in Mathematics, Vol. 217, Birkhäuser, Boston, MA, 2004.
doi: 10.1007/978-0-8176-8164-7. |
[18] |
F. G. Tricomi and A. Erdélyi,
The asymptotic expansion of a ratio of Gamma functions, Pacific J. Math., 1 (1951), 133-142.
|
[19] |
D. Yafaev,
Sharp constants in the Hardy–Rellich inequalities, J. Funct. Anal., 168 (1999), 121-144.
doi: 10.1006/jfan.1999.3462. |
[1] |
Pradeep Boggarapu, Luz Roncal, Sundaram Thangavelu. On extension problem, trace Hardy and Hardy's inequalities for some fractional Laplacians. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2575-2605. doi: 10.3934/cpaa.2019116 |
[2] |
Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143 |
[3] |
Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153 |
[4] |
Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367 |
[5] |
Lorenzo Brasco, Eleonora Cinti. On fractional Hardy inequalities in convex sets. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4019-4040. doi: 10.3934/dcds.2018175 |
[6] |
Hongjie Dong, Dong Li. On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3437-3454. doi: 10.3934/dcds.2014.34.3437 |
[7] |
James Scott, Tadele Mengesha. A fractional Korn-type inequality. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3315-3343. doi: 10.3934/dcds.2019137 |
[8] |
Takayoshi Ogawa, Kento Seraku. Logarithmic Sobolev and Shannon's inequalities and an application to the uncertainty principle. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1651-1669. doi: 10.3934/cpaa.2018079 |
[9] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3703-3718. doi: 10.3934/dcdss.2021020 |
[10] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations and Control Theory, 2022, 11 (1) : 95-124. doi: 10.3934/eect.2020104 |
[11] |
Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039 |
[12] |
Daniele Cassani, Bernhard Ruf, Cristina Tarsi. On the capacity approach to non-attainability of Hardy's inequality in $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 245-250. doi: 10.3934/dcdss.2019017 |
[13] |
Xiao-Bing Li, Qi-Lin Wang, Zhi Lin. Optimality conditions and duality for minimax fractional programming problems with data uncertainty. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1133-1151. doi: 10.3934/jimo.2018089 |
[14] |
Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057 |
[15] |
Stathis Filippas, Luisa Moschini, Achilles Tertikas. Trace Hardy--Sobolev--Maz'ya inequalities for the half fractional Laplacian. Communications on Pure and Applied Analysis, 2015, 14 (2) : 373-382. doi: 10.3934/cpaa.2015.14.373 |
[16] |
Boumediene Abdellaoui, Ahmed Attar, Abdelrazek Dieb, Ireneo Peral. Attainability of the fractional hardy constant with nonlocal mixed boundary conditions: Applications. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 5963-5991. doi: 10.3934/dcds.2018131 |
[17] |
Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1559-1600. doi: 10.3934/cpaa.2021033 |
[18] |
Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197 |
[19] |
Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975 |
[20] |
Yongliang Zhou, Yangkendi Deng, Di Wu, Dunyan Yan. Necessary and sufficient conditions on weighted multilinear fractional integral inequality. Communications on Pure and Applied Analysis, 2022, 21 (2) : 727-747. doi: 10.3934/cpaa.2021196 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]