• Previous Article
    On special regularity properties of solutions of the benjamin-ono-zakharov-kuznetsov (bo-zk) equation
  • CPAA Home
  • This Issue
  • Next Article
    On nonexistence of extremals for the Trudinger-Moser functionals involving $ L^p $ norms
September  2020, 19(9): 4269-4284. doi: 10.3934/cpaa.2020193

Existence of infinitely many solutions for semilinear problems on exterior domains

University of North Texas, Denton, TX 76203-1430, USA

Received  September 2019 Revised  March 2020 Published  June 2020

In this paper we prove the existence of infinitely many radial solutions of $ \Delta u + K(r)f(u) = 0 $ on the exterior of the ball of radius $ R>0 $, $ B_{R} $, centered at the origin in $ {\mathbb R}^{N} $ with $ u = 0 $ on $ \partial B_{R} $ and $ \lim_{r \to \infty} u(r) = 0 $ where $ N>2 $, $ f $ is odd with $ f<0 $ on $ (0, \beta) $, $ f>0 $ on $ (\beta, \infty), $ $ f $ superlinear for large $ u $ and $ 0< K(r) \leq \frac{K_{1}}{r^{\alpha}} $ with $ 2<\alpha <2(N-1) $ for large $ r $.

Citation: Joseph Iaia. Existence of infinitely many solutions for semilinear problems on exterior domains. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4269-4284. doi: 10.3934/cpaa.2020193
References:
[1]

H. Berestycki and P. L. Lions, Non-linear scalar field equations Ⅰ, Arch. Ration. Mech. Anal., 82 (1983), 313-347.  doi: 10.1007/BF00250555.

[2]

H. Berestycki and P.L. Lions, Non-linear scalar field equations Ⅱ, Arch. Rational Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.

[3]

M. Berger, Nonlinearity and Functional Analysis, Academic Press, New York, 1977.

[4]

G. Birkhoff and G. C. Rota, Ordinary Differential Equations, Ginn and Company, 1962.

[5]

A. CastroL. Sankar and R. Shivaji, Uniqueness of nonnegative solutions for semipositone problems on exterior domains, J. Math. Anal. Appl., 394 (2012), 432-437.  doi: 10.1016/j.jmaa.2012.04.005.

[6]

M. Chhetri, L. Sankar and R. Shivaji, Positive solutions for a class of superlinear semipositone systems on exterior domains, Bound. Value Probl., (2014), 198–207. doi: 10.1186/s13661-014-0198-z.

[7]

J. Iaia, Existence and nonexistence for semilinear equations on exterior domains, J. Partial Differ. Equ., 30 (2017), 1-17. 

[8]

J. Iaia, Existence and nonexistence of solutions for sublinear equations on exterior domains, Electron. J. Differ. Equ., 181 (2018), 1-14. 

[9]

J. Iaia, Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains, J. Math. Anal. Appl., 446 (2017), 591-604.  doi: 10.1016/j.jmaa.2016.08.063.

[10]

C. K. R. T. Jones and T. Kupper, On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., 17 (1986), 803-835.  doi: 10.1137/0517059.

[11]

J. Joshi, Existence and nonexistence of solutions of sublinear problems with prescribed number of zeros on exterior domains, Electron. J. Differ. Equ., 133 (2017), 1-10. 

[12]

E. K. LeeR. Shivaji and B. Son, Positive radial solutions to classes of singular problems on the exterior of a ball, J. Math. Anal. Appl., 434 (2016), 1597-1611.  doi: 10.1016/j.jmaa.2015.09.072.

[13]

E. LeeL. Sankar and R. Shivaji, Positive solutions for infinite semipositone problems on exterior domains, Differ. Integral Equ., 24 (2011), 861-875. 

[14]

K. McLeodW. C. Troy and F. B. Weissler, Radial solutions of $\Delta u + f(u) = 0$ with prescribed numbers of zeros, J. Differ. Equ., 83 (1990), 368-373.  doi: 10.1016/0022-0396(90)90063-U.

[15]

L. SankarS. Sasi and R. Shivaji, Semipositone problems with falling zeros on exterior domains, J. Math. Anal. Appl., 401 (2013), 146-153.  doi: 10.1016/j.jmaa.2012.11.031.

[16]

W. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162. 

show all references

References:
[1]

H. Berestycki and P. L. Lions, Non-linear scalar field equations Ⅰ, Arch. Ration. Mech. Anal., 82 (1983), 313-347.  doi: 10.1007/BF00250555.

[2]

H. Berestycki and P.L. Lions, Non-linear scalar field equations Ⅱ, Arch. Rational Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.

[3]

M. Berger, Nonlinearity and Functional Analysis, Academic Press, New York, 1977.

[4]

G. Birkhoff and G. C. Rota, Ordinary Differential Equations, Ginn and Company, 1962.

[5]

A. CastroL. Sankar and R. Shivaji, Uniqueness of nonnegative solutions for semipositone problems on exterior domains, J. Math. Anal. Appl., 394 (2012), 432-437.  doi: 10.1016/j.jmaa.2012.04.005.

[6]

M. Chhetri, L. Sankar and R. Shivaji, Positive solutions for a class of superlinear semipositone systems on exterior domains, Bound. Value Probl., (2014), 198–207. doi: 10.1186/s13661-014-0198-z.

[7]

J. Iaia, Existence and nonexistence for semilinear equations on exterior domains, J. Partial Differ. Equ., 30 (2017), 1-17. 

[8]

J. Iaia, Existence and nonexistence of solutions for sublinear equations on exterior domains, Electron. J. Differ. Equ., 181 (2018), 1-14. 

[9]

J. Iaia, Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains, J. Math. Anal. Appl., 446 (2017), 591-604.  doi: 10.1016/j.jmaa.2016.08.063.

[10]

C. K. R. T. Jones and T. Kupper, On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., 17 (1986), 803-835.  doi: 10.1137/0517059.

[11]

J. Joshi, Existence and nonexistence of solutions of sublinear problems with prescribed number of zeros on exterior domains, Electron. J. Differ. Equ., 133 (2017), 1-10. 

[12]

E. K. LeeR. Shivaji and B. Son, Positive radial solutions to classes of singular problems on the exterior of a ball, J. Math. Anal. Appl., 434 (2016), 1597-1611.  doi: 10.1016/j.jmaa.2015.09.072.

[13]

E. LeeL. Sankar and R. Shivaji, Positive solutions for infinite semipositone problems on exterior domains, Differ. Integral Equ., 24 (2011), 861-875. 

[14]

K. McLeodW. C. Troy and F. B. Weissler, Radial solutions of $\Delta u + f(u) = 0$ with prescribed numbers of zeros, J. Differ. Equ., 83 (1990), 368-373.  doi: 10.1016/0022-0396(90)90063-U.

[15]

L. SankarS. Sasi and R. Shivaji, Semipositone problems with falling zeros on exterior domains, J. Math. Anal. Appl., 401 (2013), 146-153.  doi: 10.1016/j.jmaa.2012.11.031.

[16]

W. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162. 

[1]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[2]

João Marcos do Ó, Sebastián Lorca, Justino Sánchez, Pedro Ubilla. Positive radial solutions for some quasilinear elliptic systems in exterior domains. Communications on Pure and Applied Analysis, 2006, 5 (3) : 571-581. doi: 10.3934/cpaa.2006.5.571

[3]

Alireza Khatib, Liliane A. Maia. A positive bound state for an asymptotically linear or superlinear Schrödinger equation in exterior domains. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2789-2812. doi: 10.3934/cpaa.2018132

[4]

Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1121-1134. doi: 10.3934/cpaa.2017054

[5]

Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41

[6]

Francesca De Marchis, Isabella Ianni. Blow up of solutions of semilinear heat equations in non radial domains of $\mathbb{R}^2$. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 891-907. doi: 10.3934/dcds.2015.35.891

[7]

Paolo Maremonti. On the Stokes problem in exterior domains: The maximum modulus theorem. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2135-2171. doi: 10.3934/dcds.2014.34.2135

[8]

Kai Yang. The focusing NLS on exterior domains in three dimensions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2269-2297. doi: 10.3934/cpaa.2017112

[9]

Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2237-2256. doi: 10.3934/cpaa.2021065

[10]

Juhi Jang, Igor Kukavica, Linfeng Li. Mach limits in analytic spaces on exterior domains. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 3629-3659. doi: 10.3934/dcds.2022027

[11]

Trad Alotaibi, D. D. Hai, R. Shivaji. Existence and nonexistence of positive radial solutions for a class of $p$-Laplacian superlinear problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4655-4666. doi: 10.3934/cpaa.2020131

[12]

Lassaad Aloui, Moez Khenissi. Boundary stabilization of the wave and Schrödinger equations in exterior domains. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 919-934. doi: 10.3934/dcds.2010.27.919

[13]

Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure and Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006

[14]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[15]

Riccardo Molle, Donato Passaseo. On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 445-454. doi: 10.3934/dcds.1998.4.445

[16]

Marcio V. Ferreira, Gustavo Alberto Perla Menzala. Uniform stabilization of an electromagnetic-elasticity problem in exterior domains. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 719-746. doi: 10.3934/dcds.2007.18.719

[17]

Dagny Butler, Eunkyung Ko, R. Shivaji. Alternate steady states for classes of reaction diffusion models on exterior domains. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1181-1191. doi: 10.3934/dcdss.2014.7.1181

[18]

Satoshi Hashimoto, Mitsuharu Ôtani. Existence of nontrivial solutions for some elliptic equations with supercritical nonlinearity in exterior domains. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 323-333. doi: 10.3934/dcds.2007.19.323

[19]

Matthias Hieber. Remarks on the theory of Oldroyd-B fluids in exterior domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1307-1313. doi: 10.3934/dcdss.2013.6.1307

[20]

Kazuhiro Ishige, Michinori Ishiwata. Global solutions for a semilinear heat equation in the exterior domain of a compact set. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 847-865. doi: 10.3934/dcds.2012.32.847

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (275)
  • HTML views (101)
  • Cited by (0)

Other articles
by authors

[Back to Top]