-
Previous Article
Large time behavior of ODE type solutions to parabolic $ p $-Laplacian type equations
- CPAA Home
- This Issue
-
Next Article
Asymptotic behavior of solutions for nonlinear integral equations with Hénon type on the unit Ball
Monotonicity with respect to $ p $ of the First Nontrivial Eigenvalue of the $ p $-Laplacian with Homogeneous Neumann Boundary Conditions
1. | Department of Mathematics, University of Craiova, 200585 Craiova, Romania |
2. | Research group of the project PN-III-P1-1.1-TE-2016-2233, University of Bucharest, 010014 Bucharest, Romania |
3. | Dep. de Matemática, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Pab 1 (1428), Buenos Aires, Argentina |
We deal with monotonicity with respect to $ p $ of the first positive eigenvalue of the $ p $-Laplace operator on $ \Omega $ subject to the homogeneous Neumann boundary condition. For any fixed integer $ D>1 $ we show that there exists $ M\in[2 e^{-1}, 2] $ such that for any open, bounded, convex domain $ \Omega\subset{{\mathbb R}}^D $ with smooth boundary for which the diameter of $ \Omega $ is less than or equal to $ M $, the first positive eigenvalue of the $ p $-Laplace operator on $ \Omega $ subject to the homogeneous Neumann boundary condition is an increasing function of $ p $ on $ (1, \infty) $. Moreover, for each real number $ s>M $ there exists a sequence of open, bounded, convex domains $ \{\Omega_n\}_n\subset{{\mathbb R}}^D $ with smooth boundaries for which the sequence of the diameters of $ \Omega_n $ converges to $ s $, as $ n\rightarrow\infty $, and for each $ n $ large enough the first positive eigenvalue of the $ p $-Laplace operator on $ \Omega_n $ subject to the homogeneous Neumann boundary condition is not a monotone function of $ p $ on $ (1, \infty) $.
References:
[1] |
S. Azicovici, N. S. Papageorgiu and V. Staicu,
The spectrum and index formula for the Neumann $p$-Laplacian and multiple solutions for problems with a crossing nonlinearity, Discrete Contin. Dyn. Syst., 25 (2009), 431-456.
doi: 10.3934/dcds.2009.25.431. |
[2] |
M. Bocea and M. Mihăilescu, On the monotonicity of the principal frequency of the $p$-Laplacian, Adv. Calc. Var., (2019).
doi: 10.1515/acv-2018-0022. |
[3] |
L. Brasco and F. Santambrogio, A note on some Poincaré inequalities on convex sets by optimal transport methods, in Geometric properties for parabolic and elliptic PDE's, Springer Proc. Math. Stat., 176, Springer, [Cham], (2016), 49–63.
doi: 10.1007/978-3-319-41538-3_4. |
[4] |
H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, (2011), xiv+599 pp. |
[5] |
J. V. Da Silva, J. D. Rossi and A. M. Salort,
Uniform stability of the ball with respect to the first Dirichlet and Neumann $\infty$-eiganvalues, Electron. J. Differ. Equ., 7 (2018), 1-9.
|
[6] |
L. Esposito, B. Kawohl, C. Nitsch and C. Trombetti,
The Neumann eigenvalue problem for the $\infty$-Laplacian, Rend. Lincei Mat. Appl., 26 (2015), 119-134.
doi: 10.4171/RLM/697. |
[7] |
L. Esposito, C. Nitsch and C. Trombetti,
Best constants in Poincaré inequalities for convex domains, J. Conv. Anal., 20 (2013), 253-264.
|
[8] |
N. Fukagai, M. Ito and K. Narukawa,
Limit as $p\rightarrow\infty$ of $p$-Laplace eigenvalue problems and $L^\infty$-inequality of Poincaré type, Differ. Integral Equ., 12 (1999), 183-206.
|
[9] |
Y. X. Huang, On the eigenvalues of the $p$-Laplacian with varying $p$, Proc. Amer. Math. Soc., 125 (1997), 3347-3354.
doi: 10.1090/S0002-9939-97-03961-0. |
[10] |
P. Juutinen, P. Lindqvist and J. J. Manfredi,
The $\infty$-eigenvalue problem, Arch. Ration. Mech. Anal., 148 (1999), 89-105.
doi: 10.1007/s002050050157. |
[11] |
R. Kajikiya, M. Tanaka and S. Tanaka,
Bifurcation of positive solutions for the one-dimensional $(p; q)$-Laplace equation, Electron. J. Differ. Equ., 107 (2017), 1-37.
|
[12] |
P. Lindqvist,
On non-linear Rayleigh quotients, Potential Anal., 2 (1993), 199-218.
doi: 10.1007/BF01048505. |
[13] |
J. D. Rossi and N. Saintier,
On the first nontrivial eigenvalue of the $\infty$-Laplacian with Neumann boundary condition, Huston J. Math., 42 (2016), 613-635.
|
[14] |
D. Valtorta,
Sharp estimate on the first eigenvalue of the $p$-Laplacian on compact manifold with nonnegative Ricci curvature, Nonlinear Anal., 75 (2012), 4974-4994.
doi: 10.1016/j.na.2012.04.012. |
show all references
References:
[1] |
S. Azicovici, N. S. Papageorgiu and V. Staicu,
The spectrum and index formula for the Neumann $p$-Laplacian and multiple solutions for problems with a crossing nonlinearity, Discrete Contin. Dyn. Syst., 25 (2009), 431-456.
doi: 10.3934/dcds.2009.25.431. |
[2] |
M. Bocea and M. Mihăilescu, On the monotonicity of the principal frequency of the $p$-Laplacian, Adv. Calc. Var., (2019).
doi: 10.1515/acv-2018-0022. |
[3] |
L. Brasco and F. Santambrogio, A note on some Poincaré inequalities on convex sets by optimal transport methods, in Geometric properties for parabolic and elliptic PDE's, Springer Proc. Math. Stat., 176, Springer, [Cham], (2016), 49–63.
doi: 10.1007/978-3-319-41538-3_4. |
[4] |
H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, (2011), xiv+599 pp. |
[5] |
J. V. Da Silva, J. D. Rossi and A. M. Salort,
Uniform stability of the ball with respect to the first Dirichlet and Neumann $\infty$-eiganvalues, Electron. J. Differ. Equ., 7 (2018), 1-9.
|
[6] |
L. Esposito, B. Kawohl, C. Nitsch and C. Trombetti,
The Neumann eigenvalue problem for the $\infty$-Laplacian, Rend. Lincei Mat. Appl., 26 (2015), 119-134.
doi: 10.4171/RLM/697. |
[7] |
L. Esposito, C. Nitsch and C. Trombetti,
Best constants in Poincaré inequalities for convex domains, J. Conv. Anal., 20 (2013), 253-264.
|
[8] |
N. Fukagai, M. Ito and K. Narukawa,
Limit as $p\rightarrow\infty$ of $p$-Laplace eigenvalue problems and $L^\infty$-inequality of Poincaré type, Differ. Integral Equ., 12 (1999), 183-206.
|
[9] |
Y. X. Huang, On the eigenvalues of the $p$-Laplacian with varying $p$, Proc. Amer. Math. Soc., 125 (1997), 3347-3354.
doi: 10.1090/S0002-9939-97-03961-0. |
[10] |
P. Juutinen, P. Lindqvist and J. J. Manfredi,
The $\infty$-eigenvalue problem, Arch. Ration. Mech. Anal., 148 (1999), 89-105.
doi: 10.1007/s002050050157. |
[11] |
R. Kajikiya, M. Tanaka and S. Tanaka,
Bifurcation of positive solutions for the one-dimensional $(p; q)$-Laplace equation, Electron. J. Differ. Equ., 107 (2017), 1-37.
|
[12] |
P. Lindqvist,
On non-linear Rayleigh quotients, Potential Anal., 2 (1993), 199-218.
doi: 10.1007/BF01048505. |
[13] |
J. D. Rossi and N. Saintier,
On the first nontrivial eigenvalue of the $\infty$-Laplacian with Neumann boundary condition, Huston J. Math., 42 (2016), 613-635.
|
[14] |
D. Valtorta,
Sharp estimate on the first eigenvalue of the $p$-Laplacian on compact manifold with nonnegative Ricci curvature, Nonlinear Anal., 75 (2012), 4974-4994.
doi: 10.1016/j.na.2012.04.012. |
[1] |
Wei-Ming Ni, Xuefeng Wang. On the first positive Neumann eigenvalue. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 1-19. doi: 10.3934/dcds.2007.17.1 |
[2] |
Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 |
[3] |
Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure and Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012 |
[4] |
Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130 |
[5] |
Dimitri Mugnai, Kanishka Perera, Edoardo Proietti Lippi. A priori estimates for the Fractional p-Laplacian with nonlocal Neumann boundary conditions and applications. Communications on Pure and Applied Analysis, 2022, 21 (1) : 275-292. doi: 10.3934/cpaa.2021177 |
[6] |
Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623 |
[7] |
Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194 |
[8] |
Leszek Gasiński. Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 143-158. doi: 10.3934/dcds.2007.17.143 |
[9] |
Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055 |
[10] |
Kanishka Perera, Andrzej Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 743-753. doi: 10.3934/dcds.2005.13.743 |
[11] |
Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure and Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019 |
[12] |
Julián Fernández Bonder, Leandro M. Del Pezzo. An optimization problem for the first eigenvalue of the $p-$Laplacian plus a potential. Communications on Pure and Applied Analysis, 2006, 5 (4) : 675-690. doi: 10.3934/cpaa.2006.5.675 |
[13] |
Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922 |
[14] |
Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063 |
[15] |
Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069 |
[16] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1121-1147. doi: 10.3934/dcdsb.2021083 |
[17] |
Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure and Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371 |
[18] |
Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063 |
[19] |
Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040 |
[20] |
Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations and Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]