# American Institute of Mathematical Sciences

• Previous Article
Maximum principles for a fully nonlinear nonlocal equation on unbounded domains
• CPAA Home
• This Issue
• Next Article
Monotonicity with respect to $p$ of the First Nontrivial Eigenvalue of the $p$-Laplacian with Homogeneous Neumann Boundary Conditions
September  2020, 19(9): 4373-4386. doi: 10.3934/cpaa.2020199

## Large time behavior of ODE type solutions to parabolic $p$-Laplacian type equations

 1 Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan 2 Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan

* Corresponding author

Received  October 2019 Revised  March 2020 Published  June 2020

Fund Project: The second author was partially supported by Grant-in-Aid for Early-Career Scientists JSPS KAKENHI Grant Number 18K13435

Let
 $u$
be a solution to the Cauchy problem for a nonlinear diffusion equation
 $\begin{equation*} \begin{cases} \partial_t u = \mathrm{div}\, (|\nabla u|^{p-2} \nabla u) + u^\alpha & \quad\mathrm{in}\quad{\bf R}^N\times(0, \infty), \\ u(x, 0) = \lambda+\varphi(x) & \quad\mathrm{in}\quad{\bf R}^N, \end{cases} \end{equation*}$
where
 $N \ge 1$
,
 $2N/(N+1) , $ \alpha \in (-\infty, 1) $, $ \lambda>0 $and $ \varphi\in BC({\bf R}^N)\, \cap\, L^1({\bf R}^N) $with $ \varphi\geq0 $in $ {\bf R}^{N} $. Then the solution $ u $behaves like a positive solution to ODE $ \zeta' = \zeta^\alpha $in $ (0, \infty) $. In this paper we show that the large time behavior of the solution $ u $is described by a rescaled Barenblatt solution. Citation: Junyong Eom, Ryuichi Sato. Large time behavior of ODE type solutions to parabolic$ p $-Laplacian type equations. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4373-4386. doi: 10.3934/cpaa.2020199 ##### References:  [1] E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 357 (1985), 1-22. doi: 10.1515/crll.1985.357.1. [2] E. DiBenedetto and A. Friedman, Addendum to Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 363 (1985), 217-220. doi: 10.1515/crll.1985.363.217. [3] E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc., 314 (1989), 187-224. doi: 10.2307/2001442. [4] E. DiBenedetto and M. A. Herrero, Nonnegative solutions of the evolution$p$-Laplacian equation. Initial traces and Cauchy problem when$1 < p < 2$, Arch. Ration. Mech. Anal., 111 (1990), 225-290. doi: 10.1007/BF00400111. [5] J. Eom and K. Ishige, Large time behavior of ODE type solutions to a nonlinear parabolic system, Nonlinear Anal., 191 (2020), 19 pp. doi: 10.1016/j.na.2019.111631. [6] J. Eom and K. Ishige, Large time behavior of ODE type solutions to nonlinear diffusion equations, Discrete Contin. Dyn. Syst., to appear. [7] A. Friedman and S. Kamin, The asymptotic behavior of gas in an$n$-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551-563. doi: 10.2307/1999846. [8] A. Gmira and L. Veron, Large time behaviour of the solutions of a semilinear parabolic equation in$\mathbf{R}^{N}$, J. Differ. Equ., 53 (1984), 258-276. doi: 10.1016/0022-0396(84)90042-1. [9] M. A. Herrero and J. L. Vázquez, Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem, Ann. Fac. Sci. Toulouse Math., 3 (1981), 113-127. [10] K. Ishige and K. Kobayashi, Convection-diffusion equation with absorption and non-decaying initial data, J. Differ. Equ., 254 (2013), 1247-1268. doi: 10.1016/j.jde.2012.10.014. [11] S. Kamin, The asymptotic behavior of the solution of the filtration equation, Israel J. Math., 14 (1973), 76-87. doi: 10.1007/BF02761536. [12] S. Kamin and L. A. Peletier, Large time behaviour of solutions of the heat equation with absorption, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 12 (1985), 393-408. [13] S. Kamin and L. A. Peletier, Large time behaviour of solutions of the porous media equation with absorption, Israel J. Math., 55 (1986), 129-146. doi: 10.1007/BF02801989. [14] S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the$p$- Laplacian equation, Rev. Mat. Iberoam., 4 (1988), 339-354. doi: 10.4171/RMI/77. [15] L. A. Peletier and J. N. Zhao, Source-type solutions of the porous media equation with absorption: the fast diffusion case, Nonlinear Anal., 14 (1990), 107-121. doi: 10.1016/0362-546X(90)90018-C. [16] J. N. Zhao, The asymptotic behaviour of solutions of a quasilinear degenerate parabolic equation, J. Differ. Equ., 102 (1993), 33-52. doi: 10.1006/jdeq.1993.1020. show all references ##### References:  [1] E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 357 (1985), 1-22. doi: 10.1515/crll.1985.357.1. [2] E. DiBenedetto and A. Friedman, Addendum to Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 363 (1985), 217-220. doi: 10.1515/crll.1985.363.217. [3] E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc., 314 (1989), 187-224. doi: 10.2307/2001442. [4] E. DiBenedetto and M. A. Herrero, Nonnegative solutions of the evolution$p$-Laplacian equation. Initial traces and Cauchy problem when$1 < p < 2$, Arch. Ration. Mech. Anal., 111 (1990), 225-290. doi: 10.1007/BF00400111. [5] J. Eom and K. Ishige, Large time behavior of ODE type solutions to a nonlinear parabolic system, Nonlinear Anal., 191 (2020), 19 pp. doi: 10.1016/j.na.2019.111631. [6] J. Eom and K. Ishige, Large time behavior of ODE type solutions to nonlinear diffusion equations, Discrete Contin. Dyn. Syst., to appear. [7] A. Friedman and S. Kamin, The asymptotic behavior of gas in an$n$-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551-563. doi: 10.2307/1999846. [8] A. Gmira and L. Veron, Large time behaviour of the solutions of a semilinear parabolic equation in$\mathbf{R}^{N}$, J. Differ. Equ., 53 (1984), 258-276. doi: 10.1016/0022-0396(84)90042-1. [9] M. A. Herrero and J. L. Vázquez, Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem, Ann. Fac. Sci. Toulouse Math., 3 (1981), 113-127. [10] K. Ishige and K. Kobayashi, Convection-diffusion equation with absorption and non-decaying initial data, J. Differ. Equ., 254 (2013), 1247-1268. doi: 10.1016/j.jde.2012.10.014. [11] S. Kamin, The asymptotic behavior of the solution of the filtration equation, Israel J. Math., 14 (1973), 76-87. doi: 10.1007/BF02761536. [12] S. Kamin and L. A. Peletier, Large time behaviour of solutions of the heat equation with absorption, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 12 (1985), 393-408. [13] S. Kamin and L. A. Peletier, Large time behaviour of solutions of the porous media equation with absorption, Israel J. Math., 55 (1986), 129-146. doi: 10.1007/BF02801989. [14] S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the$p$- Laplacian equation, Rev. Mat. Iberoam., 4 (1988), 339-354. doi: 10.4171/RMI/77. [15] L. A. Peletier and J. N. Zhao, Source-type solutions of the porous media equation with absorption: the fast diffusion case, Nonlinear Anal., 14 (1990), 107-121. doi: 10.1016/0362-546X(90)90018-C. [16] J. N. Zhao, The asymptotic behaviour of solutions of a quasilinear degenerate parabolic equation, J. Differ. Equ., 102 (1993), 33-52. doi: 10.1006/jdeq.1993.1020.  [1] Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 [2] Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683 [3] Shun Uchida. Solvability of doubly nonlinear parabolic equation with p-laplacian. Evolution Equations and Control Theory, 2022, 11 (3) : 975-1000. doi: 10.3934/eect.2021033 [4] Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033 [5] Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 [6] Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure and Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41 [7] Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93 [8] Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving$p(x)\$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22 [9] Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171 [10] Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 [11] Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 [12] Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107 [13] Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations and Control Theory, 2022, 11 (2) : 399-414. doi: 10.3934/eect.2021005 [14] Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581 [15] Philippe Laurençot, Christoph Walker. The fragmentation equation with size diffusion: Small and large size behavior of stationary solutions. Kinetic and Related Models, 2021, 14 (6) : 961-980. doi: 10.3934/krm.2021032 [16] Takanobu Okazaki. Large time behaviour of solutions of nonlinear ode describing hysteresis. Conference Publications, 2007, 2007 (Special) : 804-813. doi: 10.3934/proc.2007.2007.804 [17] Kazuhiro Ishige, Asato Mukai. Large time behavior of solutions of the heat equation with inverse square potential. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4041-4069. doi: 10.3934/dcds.2018176 [18] Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure and Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475 [19] Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767 [20] Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

2020 Impact Factor: 1.916