-
Previous Article
The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries
- CPAA Home
- This Issue
-
Next Article
Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential
Optimal decay to the non-isentropic compressible micropolar fluids
a. | School of Mathematics and statistics, Wuhan University, Wuhan 430072, China |
b. | Center for Mathematical Sciences and Department of Mathematics, Wuhan University of Technology, Wuhan 430070, China |
In this paper, we are concerned with the large-time behavior of solutions to the Cauchy problem on the non-isentropic compressible micropolar fluid. For the initial data near the given equilibrium we prove the global well-posedness of classical solutions and obtain the optimal algebraic rate of convergence in the three-dimensional whole space. Moreover, it turns out that the density, the velocity and the temperature tend to the corresponding equilibrium state with rate $ (1+t)^{-3 / 4} $ in $ L^{2} $ norm and the micro-rotational velocity tends to the equilibrium state with the faster rate $ (1+t)^{-5 / 4} $ in $ L^{2} $ norm. The proof is based on the detailed analysis of the Green function and time-weighted energy estimates.
References:
[1] |
Q. Chen and C. Miao,
Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differ. Equ., 252 (2012), 2698-2724.
doi: 10.1016/j.jde.2011.09.035. |
[2] |
B. Q. Dong, J. Li and J. Wu,
Global well-posedness and large-time decay for the 2D micropolar equations, J. Differ. Equ., 262 (2017), 3488-3523.
doi: 10.1016/j.jde.2016.11.029. |
[3] |
R. Duan,
Global smooth flows for the compressible Euler-Maxwell system. The relaxation case, J. Hyperbolic Differ. Equ., 8 (2011), 375-413.
doi: 10.1142/S0219891611002421. |
[4] |
R. Duan,
Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012), 133-197.
doi: 10.1142/S0219530512500078. |
[5] |
R. Duan, Q. Liu and C. Zhu,
Darcy's law and diffusion for a two-fluid Euler-Maxwell system with dissipation, Math. Models Meth. Appl. Sci., 25 (2015), 2089-2151.
doi: 10.1142/S0218202515500530. |
[6] |
A. C. Eringen,
Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.
doi: 10.1512/iumj.1967.16.16001. |
[7] |
B. Huang, L. Liu and L. Zhang, Global dynamics of 3d compressible micropolar fluids with vacuum and large oscillations, preprint. |
[8] |
B. Huang and L. Zhang, A global existence of classical solutions to the two-dimensional vlasov-fokker-planck and magnetohydrodynamics equations with large initial data, Kinet. Relat. Models, 12 (2019), 357.
doi: 10.3934/krm.2019016. |
[9] |
X. Huang and J. Li, Global Well-Posedness of classical solutions to the Cauchy problem of two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data, preprint, arXiv: 1207.3746. |
[10] |
S. Kawashima,
Large-time behavior of solutions for hyperbolic-parabolic systems of conservation laws, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 285-287.
|
[11] |
J. Li, Global well-posedness of the 1D compressible Navier-Stokes equations with constant heat conductivity and nonnegative density, arXiv e-prints, 2018. |
[12] |
Q. Liu and P. Zhang,
Optimal time decay of the compressible micropolar fluids, J. Differ. Equ., 260 (2016), 7634-7661.
doi: 10.1016/j.jde.2016.01.037. |
[13] |
Q. Liu and P. Zhang,
Long-time behavior of solution to the compressible micropolar fluids with external force, Nonlinear Anal. Real World Appl., 40 (2018), 361-376.
doi: 10.1016/j.nonrwa.2017.08.007. |
[14] |
N. Mujaković,
One-dimensional flow of a compressible viscous micropolar fluid: a global existence theorem, Glas. Mat. Ser. III, 33 (1998), 199-208.
|
[15] |
N. Mujaković,
One-dimensional flow of a compressible viscous micropolar fluid: a local existence theorem, Glas. Mat. Ser. III, 33 (1998), 71-91.
|
[16] |
N. Mujaković,
One-dimensional flow of a compressible viscous micropolar fluid: regularity of the solution, Rad. Mat., 10 (2001), 181-193.
|
[17] |
N. Mujaković,
Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat. Ser. III, 40 (2005), 103-120.
doi: 10.3336/gm.40.1.10. |
[18] |
Y. Shizuta and S. Kawashima,
Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.
doi: 10.14492/hokmj/1381757663. |
[19] |
M. E. Taylor, Partial Differential Equations, Vol. 23, Texts in Applied Mathematics, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4684-9320-7. |
[20] |
M. E. Taylor, Partial Differential Equations. I, Vol. 115, Applied Mathematical Sciences, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4684-9320-7. |
[21] |
V. A. Vaĭgant and A. V. Kazhikhov,
On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid, Sibirsk. Mat. Zh., 36 (1995), 1283-1316.
doi: 10.1007/BF02106835. |
[22] |
Z. Wu and W. Wang,
Green's function and pointwise estimate for a generalized Poisson-Nernst-Planck-Navier-Stokes model in dimension three, Z. Angew. Math. Mech., 98 (2018), 1066-1085.
doi: 10.1002/zamm.201700109. |
[23] |
Z. Wu and W. Wang,
The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Differ. Equ., 265 (2018), 2544-2576.
doi: 10.1016/j.jde.2018.04.039. |
show all references
References:
[1] |
Q. Chen and C. Miao,
Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differ. Equ., 252 (2012), 2698-2724.
doi: 10.1016/j.jde.2011.09.035. |
[2] |
B. Q. Dong, J. Li and J. Wu,
Global well-posedness and large-time decay for the 2D micropolar equations, J. Differ. Equ., 262 (2017), 3488-3523.
doi: 10.1016/j.jde.2016.11.029. |
[3] |
R. Duan,
Global smooth flows for the compressible Euler-Maxwell system. The relaxation case, J. Hyperbolic Differ. Equ., 8 (2011), 375-413.
doi: 10.1142/S0219891611002421. |
[4] |
R. Duan,
Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012), 133-197.
doi: 10.1142/S0219530512500078. |
[5] |
R. Duan, Q. Liu and C. Zhu,
Darcy's law and diffusion for a two-fluid Euler-Maxwell system with dissipation, Math. Models Meth. Appl. Sci., 25 (2015), 2089-2151.
doi: 10.1142/S0218202515500530. |
[6] |
A. C. Eringen,
Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.
doi: 10.1512/iumj.1967.16.16001. |
[7] |
B. Huang, L. Liu and L. Zhang, Global dynamics of 3d compressible micropolar fluids with vacuum and large oscillations, preprint. |
[8] |
B. Huang and L. Zhang, A global existence of classical solutions to the two-dimensional vlasov-fokker-planck and magnetohydrodynamics equations with large initial data, Kinet. Relat. Models, 12 (2019), 357.
doi: 10.3934/krm.2019016. |
[9] |
X. Huang and J. Li, Global Well-Posedness of classical solutions to the Cauchy problem of two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data, preprint, arXiv: 1207.3746. |
[10] |
S. Kawashima,
Large-time behavior of solutions for hyperbolic-parabolic systems of conservation laws, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 285-287.
|
[11] |
J. Li, Global well-posedness of the 1D compressible Navier-Stokes equations with constant heat conductivity and nonnegative density, arXiv e-prints, 2018. |
[12] |
Q. Liu and P. Zhang,
Optimal time decay of the compressible micropolar fluids, J. Differ. Equ., 260 (2016), 7634-7661.
doi: 10.1016/j.jde.2016.01.037. |
[13] |
Q. Liu and P. Zhang,
Long-time behavior of solution to the compressible micropolar fluids with external force, Nonlinear Anal. Real World Appl., 40 (2018), 361-376.
doi: 10.1016/j.nonrwa.2017.08.007. |
[14] |
N. Mujaković,
One-dimensional flow of a compressible viscous micropolar fluid: a global existence theorem, Glas. Mat. Ser. III, 33 (1998), 199-208.
|
[15] |
N. Mujaković,
One-dimensional flow of a compressible viscous micropolar fluid: a local existence theorem, Glas. Mat. Ser. III, 33 (1998), 71-91.
|
[16] |
N. Mujaković,
One-dimensional flow of a compressible viscous micropolar fluid: regularity of the solution, Rad. Mat., 10 (2001), 181-193.
|
[17] |
N. Mujaković,
Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat. Ser. III, 40 (2005), 103-120.
doi: 10.3336/gm.40.1.10. |
[18] |
Y. Shizuta and S. Kawashima,
Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.
doi: 10.14492/hokmj/1381757663. |
[19] |
M. E. Taylor, Partial Differential Equations, Vol. 23, Texts in Applied Mathematics, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4684-9320-7. |
[20] |
M. E. Taylor, Partial Differential Equations. I, Vol. 115, Applied Mathematical Sciences, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4684-9320-7. |
[21] |
V. A. Vaĭgant and A. V. Kazhikhov,
On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid, Sibirsk. Mat. Zh., 36 (1995), 1283-1316.
doi: 10.1007/BF02106835. |
[22] |
Z. Wu and W. Wang,
Green's function and pointwise estimate for a generalized Poisson-Nernst-Planck-Navier-Stokes model in dimension three, Z. Angew. Math. Mech., 98 (2018), 1066-1085.
doi: 10.1002/zamm.201700109. |
[23] |
Z. Wu and W. Wang,
The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Differ. Equ., 265 (2018), 2544-2576.
doi: 10.1016/j.jde.2018.04.039. |
[1] |
Xin Zhong. Global well-posedness and exponential decay for 3D nonhomogeneous magneto-micropolar fluid equations with vacuum. Communications on Pure and Applied Analysis, 2022, 21 (2) : 493-515. doi: 10.3934/cpaa.2021185 |
[2] |
Kazuo Yamazaki. Large deviation principle for the micropolar, magneto-micropolar fluid systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 913-938. doi: 10.3934/dcdsb.2018048 |
[3] |
Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439 |
[4] |
Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487 |
[5] |
Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098 |
[6] |
Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007 |
[7] |
Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791 |
[8] |
Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307 |
[9] |
Haibo Cui, Junpei Gao, Lei Yao. Asymptotic behavior of the one-dimensional compressible micropolar fluid model. Electronic Research Archive, 2021, 29 (2) : 2063-2075. doi: 10.3934/era.2020105 |
[10] |
Zhi-Ying Sun, Lan Huang, Xin-Guang Yang. Exponential stability and regularity of compressible viscous micropolar fluid with cylinder symmetry. Electronic Research Archive, 2020, 28 (2) : 861-878. doi: 10.3934/era.2020045 |
[11] |
Haibo Cui, Haiyan Yin. Stability of the composite wave for the inflow problem on the micropolar fluid model. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1265-1292. doi: 10.3934/cpaa.2017062 |
[12] |
Cung The Anh, Vu Manh Toi. Local exact controllability to trajectories of the magneto-micropolar fluid equations. Evolution Equations and Control Theory, 2017, 6 (3) : 357-379. doi: 10.3934/eect.2017019 |
[13] |
Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6339-6357. doi: 10.3934/dcdsb.2021021 |
[14] |
Lan Huang, Zhiying Sun, Xin-Guang Yang, Alain Miranville. Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1595-1620. doi: 10.3934/cpaa.2022033 |
[15] |
Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767 |
[16] |
Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure and Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657 |
[17] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210 |
[18] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
[19] |
Kazuo Yamazaki. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2193-2207. doi: 10.3934/dcds.2015.35.2193 |
[20] |
Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]