\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal decay to the non-isentropic compressible micropolar fluids

  • * Corresponding author

    * Corresponding author

The second author is supported by NSF grant No.11971359, 11671309

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we are concerned with the large-time behavior of solutions to the Cauchy problem on the non-isentropic compressible micropolar fluid. For the initial data near the given equilibrium we prove the global well-posedness of classical solutions and obtain the optimal algebraic rate of convergence in the three-dimensional whole space. Moreover, it turns out that the density, the velocity and the temperature tend to the corresponding equilibrium state with rate $ (1+t)^{-3 / 4} $ in $ L^{2} $ norm and the micro-rotational velocity tends to the equilibrium state with the faster rate $ (1+t)^{-5 / 4} $ in $ L^{2} $ norm. The proof is based on the detailed analysis of the Green function and time-weighted energy estimates.

    Mathematics Subject Classification: Primary: 35Q35, 76D03; Secondary: 86A10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differ. Equ., 252 (2012), 2698-2724.  doi: 10.1016/j.jde.2011.09.035.
    [2] B. Q. DongJ. Li and J. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differ. Equ., 262 (2017), 3488-3523.  doi: 10.1016/j.jde.2016.11.029.
    [3] R. Duan, Global smooth flows for the compressible Euler-Maxwell system. The relaxation case, J. Hyperbolic Differ. Equ., 8 (2011), 375-413.  doi: 10.1142/S0219891611002421.
    [4] R. Duan, Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012), 133-197.  doi: 10.1142/S0219530512500078.
    [5] R. DuanQ. Liu and C. Zhu, Darcy's law and diffusion for a two-fluid Euler-Maxwell system with dissipation, Math. Models Meth. Appl. Sci., 25 (2015), 2089-2151.  doi: 10.1142/S0218202515500530.
    [6] A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.
    [7] B. Huang, L. Liu and L. Zhang, Global dynamics of 3d compressible micropolar fluids with vacuum and large oscillations, preprint.
    [8] B. Huang and L. Zhang, A global existence of classical solutions to the two-dimensional vlasov-fokker-planck and magnetohydrodynamics equations with large initial data, Kinet. Relat. Models, 12 (2019), 357. doi: 10.3934/krm.2019016.
    [9] X. Huang and J. Li, Global Well-Posedness of classical solutions to the Cauchy problem of two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data, preprint, arXiv: 1207.3746.
    [10] S. Kawashima, Large-time behavior of solutions for hyperbolic-parabolic systems of conservation laws, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 285-287. 
    [11] J. Li, Global well-posedness of the 1D compressible Navier-Stokes equations with constant heat conductivity and nonnegative density, arXiv e-prints, 2018.
    [12] Q. Liu and P. Zhang, Optimal time decay of the compressible micropolar fluids, J. Differ. Equ., 260 (2016), 7634-7661.  doi: 10.1016/j.jde.2016.01.037.
    [13] Q. Liu and P. Zhang, Long-time behavior of solution to the compressible micropolar fluids with external force, Nonlinear Anal. Real World Appl., 40 (2018), 361-376.  doi: 10.1016/j.nonrwa.2017.08.007.
    [14] N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: a global existence theorem, Glas. Mat. Ser. III, 33 (1998), 199-208. 
    [15] N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: a local existence theorem, Glas. Mat. Ser. III, 33 (1998), 71-91. 
    [16] N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: regularity of the solution, Rad. Mat., 10 (2001), 181-193. 
    [17] N. Mujaković, Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat. Ser. III, 40 (2005), 103-120.  doi: 10.3336/gm.40.1.10.
    [18] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.  doi: 10.14492/hokmj/1381757663.
    [19] M. E. Taylor, Partial Differential Equations, Vol. 23, Texts in Applied Mathematics, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4684-9320-7.
    [20] M. E. Taylor, Partial Differential Equations. I, Vol. 115, Applied Mathematical Sciences, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4684-9320-7.
    [21] V. A. Vaĭgant and A. V. Kazhikhov, On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid, Sibirsk. Mat. Zh., 36 (1995), 1283-1316.  doi: 10.1007/BF02106835.
    [22] Z. Wu and W. Wang, Green's function and pointwise estimate for a generalized Poisson-Nernst-Planck-Navier-Stokes model in dimension three, Z. Angew. Math. Mech., 98 (2018), 1066-1085.  doi: 10.1002/zamm.201700109.
    [23] Z. Wu and W. Wang, The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Differ. Equ., 265 (2018), 2544-2576.  doi: 10.1016/j.jde.2018.04.039.
  • 加载中
SHARE

Article Metrics

HTML views(293) PDF downloads(327) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return