October  2020, 19(10): 4797-4816. doi: 10.3934/cpaa.2020212

Global bifurcation for the Hénon problem

Dipartimento di Scienze Applicate, Università di Napoli "Parthenope", Centro Direzionale di Napoli, Isola C4, 80143 Napoli, Italy

Received  September 2019 Revised  May 2020 Published  July 2020

Fund Project: The author is member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

We prove the existence of nonradial solutions for the Hénon equation in the ball with any given number of nodal zones, for arbitrary values of the exponent $ \alpha $. For sign-changing solutions, the case $ \alpha = 0 $ -Lane-Emden equation- is included. The obtained solutions form global continua which branch off from the curve of radial solutions $ p\mapsto u_p $, and the number of branching points increases with both the number of nodal zones and the exponent $ \alpha $. The proof technique relies on the index of fixed points in cones and provides information on the symmetry properties of the bifurcating solutions and the possible intersection and/or overlapping between different branches, thus allowing to separate them in some cases.

Citation: Anna Lisa Amadori. Global bifurcation for the Hénon problem. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4797-4816. doi: 10.3934/cpaa.2020212
References:
[1]

A. L. Amadori and F. Gladiali, The Hénon problem with large exponent in the disc, J. Differ. Equ., 268 (2020), 5892-5944.  doi: 10.1016/j.jde.2019.11.017.

[2]

A. L. Amadori, On the asymptotically linear Hénon problem, to appear, Commun. Contemp. Math., 2019. doi: 10.1142/S021919972050042X.

[3]

A. L. Amadori and F. Gladiali, Bifurcation and symmetry breaking for the Hénon equation, Adv. Differ. Equ., 19 (2014), 755-782. 

[4]

A. L. Amadori and F. Gladiali, Nonradial sign changing solutions to Lane-Emden problem in an annulus, Nonlinear Anal., 155 (2017), 294-305.  doi: 10.1016/j.na.2017.02.027.

[5]

A. L. Amadori and F. Gladiali, Asymptotic profile and morse index of nodal radial solutions to the Hénon problem, Calc. Var. Partial Differ. Equ., 58 (2019), 1-47.  doi: 10.1007/s00526-019-1606-0.

[6]

A. L. Amadori and F. Gladiali, On a singular eigenvalue problem and its applications in computing the morse index of solutions to semilinear PDE's: II, Nonlinearity, 33 (2020), 2541-2561.  doi: 10.1088/1361-6544/ab7639.

[7]

A. L. Amadori and F. Gladiali, On a singular eigenvalue problem and its applications in computing the morse index of solutions to semilinear PDE's, Nonlinear Anal. Real World Appl., 55 (2020), Art. 103133. doi: 10.1016/j.nonrwa.2020.103133.

[8]

M. Badiale and E. Serra, Multiplicity results for the supercritical Hénon equation, Adv. Nonlinear Stud., 4 (2004), 453-467.  doi: 10.1515/ans-2004-0406.

[9]

T. BartschT. D'Aprile and A. Pistoia, On the profile of sign-changing solutions of an almost critical problem in the ball, Bull. Lond. Math. Soc., 45 (2013), 1246-1258.  doi: 10.1112/blms/bdt061.

[10]

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on ${\mathbb R}^N$, Arch. Ration. Mech. Anal., 124 (1993), 261-276.  doi: 10.1007/BF00953069.

[11]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.  doi: 10.1016/0022-247X(83)90098-7.

[12]

E. N. Dancer and P. Hess, Global breaking of symmetry of positive solutions on two-dimensional annuli, Differ. Integral Equ., 5 (1992), 903-913. 

[13]

E. N. Dancer and J. Wei, Sign-changing solutions for supercritical elliptic problems in domains with small holes, Manuscr. Math., 123 (2007), 493-511.  doi: 10.1007/s00229-007-0110-6.

[14]

F. De MarchisI. Ianni and F. Pacella, A Morse index formula for radial solutions of LaneEmden problems, Adv. Math., 322 (2017), 682-737.  doi: 10.1016/j.aim.2017.10.026.

[15]

F. De MarchisI. Ianni and F. Pacella, Exact Morse index computation for nodal radial solutions of Lane-Emden problems, Math. Ann., 367 (2017), 185-227.  doi: 10.1007/s00208-016-1381-6.

[16]

P. EspositoA. Pistoia and J. Wei, Concentrating solutions for the Hénon equation in ${\mathbb R}^2$, J. Anal. Math., 100 (2006), 249-280.  doi: 10.1007/BF02916763.

[17]

P. Figueroa and S. L. N. Neves, Nonradial solutions for the Hénon equation close to the threshold, Adv. Nonlinear Stud., 19 (2019), 757-770.  doi: 10.1515/ans-2019-2052.

[18]

F. Gladiali, A global bifurcation result for a semilinear elliptic equation, J. Math. Anal. Appl., 369 (2010), 306-311.  doi: 10.1016/j.jmaa.2010.03.018.

[19]

F. Gladiali and I. Ianni, Quasi-radial solutions for the Lane-Emden problem in the ball, NoDea Nonlinear Differ. Equ. Appl., 27 (2020), Art. 13. doi: 10.1007/s00030-020-0616-0.

[20]

I. Ianni and A. Saldana, Sharp asymptotic behavior of radial solutions of some planar semilinear elliptic problems, preprint, arXiv: 1908.10503.

[21]

J. Kubler and T. Weth, Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation, Discrete Contin. Dyn. Syst., 40 (2019), Art. 3629. doi: 10.3934/dcds.2020032.

[22]

W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u + f(u, r) = 0$, Commun. Pure Appl. Math., 38 (1985), Art. 67. doi: 10.1002/cpa.3160380105.

[23]

A. Pistoia and E. Serra, Multi-peak solutions for the Hénon equation with slightly subcritical growth, Math. Z., 256 (2007), Art. 75. doi: 10.1007/s00209-006-0060-9.

[24]

M. Willem, D. Smets and J. Su, Non-radial ground states for the Hénon equation, Commun. Contemp. Math., 4 (2002), Art. 467. doi: 10.1142/S0219199702000725.

[25]

Y. B. Zhang and H. T. Yang, Multi-peak nodal solutions for a two-dimensional elliptic problem with large exponent in weighted nonlinearity, Acta Math. Appl. Sin., 31 (2015), 261-276.  doi: 10.1007/s10255-015-0465-5.

show all references

References:
[1]

A. L. Amadori and F. Gladiali, The Hénon problem with large exponent in the disc, J. Differ. Equ., 268 (2020), 5892-5944.  doi: 10.1016/j.jde.2019.11.017.

[2]

A. L. Amadori, On the asymptotically linear Hénon problem, to appear, Commun. Contemp. Math., 2019. doi: 10.1142/S021919972050042X.

[3]

A. L. Amadori and F. Gladiali, Bifurcation and symmetry breaking for the Hénon equation, Adv. Differ. Equ., 19 (2014), 755-782. 

[4]

A. L. Amadori and F. Gladiali, Nonradial sign changing solutions to Lane-Emden problem in an annulus, Nonlinear Anal., 155 (2017), 294-305.  doi: 10.1016/j.na.2017.02.027.

[5]

A. L. Amadori and F. Gladiali, Asymptotic profile and morse index of nodal radial solutions to the Hénon problem, Calc. Var. Partial Differ. Equ., 58 (2019), 1-47.  doi: 10.1007/s00526-019-1606-0.

[6]

A. L. Amadori and F. Gladiali, On a singular eigenvalue problem and its applications in computing the morse index of solutions to semilinear PDE's: II, Nonlinearity, 33 (2020), 2541-2561.  doi: 10.1088/1361-6544/ab7639.

[7]

A. L. Amadori and F. Gladiali, On a singular eigenvalue problem and its applications in computing the morse index of solutions to semilinear PDE's, Nonlinear Anal. Real World Appl., 55 (2020), Art. 103133. doi: 10.1016/j.nonrwa.2020.103133.

[8]

M. Badiale and E. Serra, Multiplicity results for the supercritical Hénon equation, Adv. Nonlinear Stud., 4 (2004), 453-467.  doi: 10.1515/ans-2004-0406.

[9]

T. BartschT. D'Aprile and A. Pistoia, On the profile of sign-changing solutions of an almost critical problem in the ball, Bull. Lond. Math. Soc., 45 (2013), 1246-1258.  doi: 10.1112/blms/bdt061.

[10]

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on ${\mathbb R}^N$, Arch. Ration. Mech. Anal., 124 (1993), 261-276.  doi: 10.1007/BF00953069.

[11]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.  doi: 10.1016/0022-247X(83)90098-7.

[12]

E. N. Dancer and P. Hess, Global breaking of symmetry of positive solutions on two-dimensional annuli, Differ. Integral Equ., 5 (1992), 903-913. 

[13]

E. N. Dancer and J. Wei, Sign-changing solutions for supercritical elliptic problems in domains with small holes, Manuscr. Math., 123 (2007), 493-511.  doi: 10.1007/s00229-007-0110-6.

[14]

F. De MarchisI. Ianni and F. Pacella, A Morse index formula for radial solutions of LaneEmden problems, Adv. Math., 322 (2017), 682-737.  doi: 10.1016/j.aim.2017.10.026.

[15]

F. De MarchisI. Ianni and F. Pacella, Exact Morse index computation for nodal radial solutions of Lane-Emden problems, Math. Ann., 367 (2017), 185-227.  doi: 10.1007/s00208-016-1381-6.

[16]

P. EspositoA. Pistoia and J. Wei, Concentrating solutions for the Hénon equation in ${\mathbb R}^2$, J. Anal. Math., 100 (2006), 249-280.  doi: 10.1007/BF02916763.

[17]

P. Figueroa and S. L. N. Neves, Nonradial solutions for the Hénon equation close to the threshold, Adv. Nonlinear Stud., 19 (2019), 757-770.  doi: 10.1515/ans-2019-2052.

[18]

F. Gladiali, A global bifurcation result for a semilinear elliptic equation, J. Math. Anal. Appl., 369 (2010), 306-311.  doi: 10.1016/j.jmaa.2010.03.018.

[19]

F. Gladiali and I. Ianni, Quasi-radial solutions for the Lane-Emden problem in the ball, NoDea Nonlinear Differ. Equ. Appl., 27 (2020), Art. 13. doi: 10.1007/s00030-020-0616-0.

[20]

I. Ianni and A. Saldana, Sharp asymptotic behavior of radial solutions of some planar semilinear elliptic problems, preprint, arXiv: 1908.10503.

[21]

J. Kubler and T. Weth, Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation, Discrete Contin. Dyn. Syst., 40 (2019), Art. 3629. doi: 10.3934/dcds.2020032.

[22]

W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u + f(u, r) = 0$, Commun. Pure Appl. Math., 38 (1985), Art. 67. doi: 10.1002/cpa.3160380105.

[23]

A. Pistoia and E. Serra, Multi-peak solutions for the Hénon equation with slightly subcritical growth, Math. Z., 256 (2007), Art. 75. doi: 10.1007/s00209-006-0060-9.

[24]

M. Willem, D. Smets and J. Su, Non-radial ground states for the Hénon equation, Commun. Contemp. Math., 4 (2002), Art. 467. doi: 10.1142/S0219199702000725.

[25]

Y. B. Zhang and H. T. Yang, Multi-peak nodal solutions for a two-dimensional elliptic problem with large exponent in weighted nonlinearity, Acta Math. Appl. Sin., 31 (2015), 261-276.  doi: 10.1007/s10255-015-0465-5.

[1]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[2]

Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031

[3]

Shengbing Deng. Construction solutions for Neumann problem with Hénon term in $ \mathbb{R}^2 $. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2233-2253. doi: 10.3934/dcds.2019094

[4]

Xiao-Jing Zhong, Chun-Lei Tang. The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem. Communications on Pure and Applied Analysis, 2017, 16 (2) : 611-628. doi: 10.3934/cpaa.2017030

[5]

Zhongyuan Liu. Nodal Bubble-Tower Solutions for a semilinear elliptic problem with competing powers. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5299-5317. doi: 10.3934/dcds.2017230

[6]

Walter Allegretto, Yanping Lin, Shuqing Ma. Hölder continuous solutions of an obstacle thermistor problem. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 983-997. doi: 10.3934/dcdsb.2004.4.983

[7]

Vanderlei Horita, Nivaldo Muniz. Basin problem for Hénon-like attractors in arbitrary dimensions. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 481-504. doi: 10.3934/dcds.2006.15.481

[8]

Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487

[9]

Jianqing Chen, Qian Zhang. Multiple non-radially symmetrical nodal solutions for the Schrödinger system with positive quasilinear term. Communications on Pure and Applied Analysis, 2022, 21 (2) : 669-686. doi: 10.3934/cpaa.2021193

[10]

Juan Carlos Fernández, Oscar Palmas, Jimmy Petean. Supercritical elliptic problems on the round sphere and nodal solutions to the Yamabe problem in projective spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2495-2514. doi: 10.3934/dcds.2020123

[11]

Inbo Sim. On the existence of nodal solutions for singular one-dimensional $\varphi$-Laplacian problem with asymptotic condition. Communications on Pure and Applied Analysis, 2008, 7 (4) : 905-923. doi: 10.3934/cpaa.2008.7.905

[12]

Eudes. M. Barboza, Olimpio H. Miyagaki, Fábio R. Pereira, Cláudia R. Santana. Radial solutions for a class of Hénon type systems with partial interference with the spectrum. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3159-3187. doi: 10.3934/cpaa.2020137

[13]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1559-1600. doi: 10.3934/cpaa.2021033

[14]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Hénon equation involving a nonlinear gradient term. Communications on Pure and Applied Analysis, 2022, 21 (1) : 141-158. doi: 10.3934/cpaa.2021172

[15]

Yanan Li, Alexandre N. Carvalho, Tito L. M. Luna, Estefani M. Moreira. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5181-5196. doi: 10.3934/cpaa.2020232

[16]

Kuan-Ju Huang, Yi-Jung Lee, Tzung-Shin Yeh. Classification of bifurcation curves of positive solutions for a nonpositone problem with a quartic polynomial. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1497-1514. doi: 10.3934/cpaa.2016.15.1497

[17]

Monica Lazzo, Paul G. Schmidt. Nodal properties of radial solutions for a class of polyharmonic equations. Conference Publications, 2007, 2007 (Special) : 634-643. doi: 10.3934/proc.2007.2007.634

[18]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[19]

Ziyi Cai, Haiyang He. Asymptotic behavior of solutions for nonlinear integral equations with Hénon type on the unit Ball. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4349-4362. doi: 10.3934/cpaa.2020196

[20]

Eduardo Hernández, Donal O'Regan. $C^{\alpha}$-Hölder classical solutions for non-autonomous neutral differential equations. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 241-260. doi: 10.3934/dcds.2011.29.241

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (285)
  • HTML views (71)
  • Cited by (0)

Other articles
by authors

[Back to Top]