-
Previous Article
Semilinear elliptic problems involving exponential critical growth in the half-space
- CPAA Home
- This Issue
-
Next Article
Subsonic solutions to a shock diffraction problem by a convex cornered wedge for the pressure gradient system
Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China |
In this paper, we use the Perron method to prove the existence and uniqueness of the exterior problem for a kind of parabolic Monge-Ampère equation $ -u_t+\log\det D^2u = f(x) $ with prescribed asymptotic behavior at infinity, where $ f $ is asymptotically close to a radial function at infinity. We generalize the results of both the elliptic exterior problems and the parabolic interior problems for the Monge-Ampère equations.
References:
[1] |
J. Bao, H. Li and L. Zhang,
Monge-Ampère equation on exterior domains, Calc. Var. Partial Differ. Equ., 52 (2015), 39-63.
doi: 10.1007/s00526-013-0704-7. |
[2] |
J. Bao, J. Xiong and Z. Zhou, Existence of entire solutions of Monge-Ampère equations with prescribed asymptotic behaviors, Calc. Var. Partial Differ. Equ., 58 (2019), Art. 193, 12 pp.
doi: 10.1007/s00526-019-1639-4. |
[3] |
L. Caffarelli, Interior $W^{2, p}$ estimates for solutions of the Monge-Ampère equation, Ann. of Math., (2) 131 (1990), no. 1, 135-150. |
[4] |
L. Caffarelli, L. Nirenberg and J. Spruck,
The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Commun. Pure Appl. Math., 37 (1984), 369-402.
doi: 10.1002/cpa.3160370306. |
[5] |
L. Caffarelli and Y. Li, An extension to a theorem of J$\ddot{o}$rgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549–583.
doi: 10.1002/cpa.10067. |
[6] |
K. Chou and X. Wang,
A logarithmic Gauss curvature flow and the Minkowski problem, Ann. Inst. Henri Poincare Anal. Non Lineaire, 17 (2001), 733-751.
doi: 10.1016/S0294-1449(00)00053-6. |
[7] |
M. G. Crandall, H. Ishii and P. L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[8] |
L. Dai,
Exterior problems for a parabolic Monge-Ampère equation, Nonlinear Anal. Theory Meth. Appl., 100 (2014), 99-110.
doi: 10.1016/j.na.2014.01.011. |
[9] |
L. Ferrer, A. Martínez and F. Mil$ \rm\acute{a} $n,
An extension of a theorem by K. J$\ddot{o}$rgens and a maximum principle at infinity for parabolic affine spheres, Math. Z., 230 (1999), 471-486.
doi: 10.1007/PL00004700. |
[10] |
L. Ferrer, A. Martínez and F. Mil$ \rm\acute{a} $n,
The space of parabolic affine spheres with fixed compact boundary, Monatsh. Math., 130 (2000), 19-27.
doi: 10.1007/s006050050084. |
[11] |
H. Ishii and P.L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Partial Differ. Equ., 83 (1990), 26-78. |
[12] |
N. M. Ivochkina and O. A. Ladyzhenskaya,
On parabolic equations generated by symmetric functions of the principal curvatures of the evolving surfacing, or of the eigenvalues of Hessian, part Ⅰ: parabolic Monge-Ampère equations, St. Petersburg Math. J., 6 (1994), 527-594.
|
[13] |
T. Jin and J. Xiong,
Solutions of some Monge-Ampère equations with isolated and line singularities, Adv. Math, 289 (2016), 114-141.
doi: 10.1016/j.aim.2015.11.029. |
[14] |
Y. Li and S. Lu, Existence and nonexistence to exterior Dirichlet problem for Monge Ampère equation, Calc. Var. Partial Differ. Equ., (2018), 57–161.
doi: 10.1007/s00526-018-1428-5. |
[15] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996.
doi: 10.1142/3302. |
[16] |
J. Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math., 7 (1977), 345-364.
doi: 10.1216/rmj-1977-7-2-345. |
[17] |
R. Wang and G. Wang,
On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8 (1992), 417-446.
|
[18] |
R. Wang and G. Wang,
The Geometric Measure Theoretical Characterization of Viscosity Solutions to Parabolic Monge-Ampère Type Equation, J. Partial Differ. Equ., 6 (1993), 237-254.
|
[19] |
R. Wang and G. Wang,
On another kind of parabolic Monge-Ampère equation: the existence, uniqueness and regularity of the viscosity solution, Northeast. Math. J., 10 (1994), 434-454.
doi: 10.13447/j.1674-5647.1994.04.002. |
[20] |
Y. Zhan, Viscosity solutions of nonlinear degenerate parabolic equations and several applications, Ph.D thesis, University of Toronto (Canada), ProQuest LLC, Ann Arbor, MI, 2000. |
show all references
References:
[1] |
J. Bao, H. Li and L. Zhang,
Monge-Ampère equation on exterior domains, Calc. Var. Partial Differ. Equ., 52 (2015), 39-63.
doi: 10.1007/s00526-013-0704-7. |
[2] |
J. Bao, J. Xiong and Z. Zhou, Existence of entire solutions of Monge-Ampère equations with prescribed asymptotic behaviors, Calc. Var. Partial Differ. Equ., 58 (2019), Art. 193, 12 pp.
doi: 10.1007/s00526-019-1639-4. |
[3] |
L. Caffarelli, Interior $W^{2, p}$ estimates for solutions of the Monge-Ampère equation, Ann. of Math., (2) 131 (1990), no. 1, 135-150. |
[4] |
L. Caffarelli, L. Nirenberg and J. Spruck,
The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Commun. Pure Appl. Math., 37 (1984), 369-402.
doi: 10.1002/cpa.3160370306. |
[5] |
L. Caffarelli and Y. Li, An extension to a theorem of J$\ddot{o}$rgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549–583.
doi: 10.1002/cpa.10067. |
[6] |
K. Chou and X. Wang,
A logarithmic Gauss curvature flow and the Minkowski problem, Ann. Inst. Henri Poincare Anal. Non Lineaire, 17 (2001), 733-751.
doi: 10.1016/S0294-1449(00)00053-6. |
[7] |
M. G. Crandall, H. Ishii and P. L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[8] |
L. Dai,
Exterior problems for a parabolic Monge-Ampère equation, Nonlinear Anal. Theory Meth. Appl., 100 (2014), 99-110.
doi: 10.1016/j.na.2014.01.011. |
[9] |
L. Ferrer, A. Martínez and F. Mil$ \rm\acute{a} $n,
An extension of a theorem by K. J$\ddot{o}$rgens and a maximum principle at infinity for parabolic affine spheres, Math. Z., 230 (1999), 471-486.
doi: 10.1007/PL00004700. |
[10] |
L. Ferrer, A. Martínez and F. Mil$ \rm\acute{a} $n,
The space of parabolic affine spheres with fixed compact boundary, Monatsh. Math., 130 (2000), 19-27.
doi: 10.1007/s006050050084. |
[11] |
H. Ishii and P.L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Partial Differ. Equ., 83 (1990), 26-78. |
[12] |
N. M. Ivochkina and O. A. Ladyzhenskaya,
On parabolic equations generated by symmetric functions of the principal curvatures of the evolving surfacing, or of the eigenvalues of Hessian, part Ⅰ: parabolic Monge-Ampère equations, St. Petersburg Math. J., 6 (1994), 527-594.
|
[13] |
T. Jin and J. Xiong,
Solutions of some Monge-Ampère equations with isolated and line singularities, Adv. Math, 289 (2016), 114-141.
doi: 10.1016/j.aim.2015.11.029. |
[14] |
Y. Li and S. Lu, Existence and nonexistence to exterior Dirichlet problem for Monge Ampère equation, Calc. Var. Partial Differ. Equ., (2018), 57–161.
doi: 10.1007/s00526-018-1428-5. |
[15] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996.
doi: 10.1142/3302. |
[16] |
J. Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math., 7 (1977), 345-364.
doi: 10.1216/rmj-1977-7-2-345. |
[17] |
R. Wang and G. Wang,
On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8 (1992), 417-446.
|
[18] |
R. Wang and G. Wang,
The Geometric Measure Theoretical Characterization of Viscosity Solutions to Parabolic Monge-Ampère Type Equation, J. Partial Differ. Equ., 6 (1993), 237-254.
|
[19] |
R. Wang and G. Wang,
On another kind of parabolic Monge-Ampère equation: the existence, uniqueness and regularity of the viscosity solution, Northeast. Math. J., 10 (1994), 434-454.
doi: 10.13447/j.1674-5647.1994.04.002. |
[20] |
Y. Zhan, Viscosity solutions of nonlinear degenerate parabolic equations and several applications, Ph.D thesis, University of Toronto (Canada), ProQuest LLC, Ann Arbor, MI, 2000. |
[1] |
Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069 |
[2] |
Yahui Niu. Monotonicity of solutions for a class of nonlocal Monge-Ampère problem. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5269-5283. doi: 10.3934/cpaa.2020237 |
[3] |
Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations and Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015 |
[4] |
Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991 |
[5] |
Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559 |
[6] |
Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061 |
[7] |
Ziwei Zhou, Jiguang Bao, Bo Wang. A Liouville theorem of parabolic Monge-AmpÈre equations in half-space. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1561-1578. doi: 10.3934/dcds.2020331 |
[8] |
Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure and Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59 |
[9] |
Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705 |
[10] |
Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221 |
[11] |
Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053 |
[12] |
Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058 |
[13] |
Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825 |
[14] |
Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002 |
[15] |
Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121 |
[16] |
Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060 |
[17] |
Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure and Applied Analysis, 2021, 20 (2) : 915-931. doi: 10.3934/cpaa.2020297 |
[18] |
Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267 |
[19] |
Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347 |
[20] |
Nam Q. Le. Optimal boundary regularity for some singular Monge-Ampère equations on bounded convex domains. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2199-2214. doi: 10.3934/dcds.2021188 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]