• Previous Article
    Mass concentration phenomenon to the two-dimensional Cauchy problem of the compressible Magnetohydrodynamic equations
  • CPAA Home
  • This Issue
  • Next Article
    Semilinear elliptic problems involving exponential critical growth in the half-space
October  2020, 19(10): 4955-4972. doi: 10.3934/cpaa.2020220

Periodic solutions of an age-structured epidemic model with periodic infection rate

1. 

Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA

2. 

Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH 44106, USA

* Corresponding author

Received  January 2020 Revised  May 2020 Published  July 2020

Fund Project: Research was partially supported by National Science Foundation (DMS-1853622)

In this paper we consider an age-structured epidemic model of the susceptible-exposed-infectious-recovered (SEIR) type. To characterize the seasonality of some infectious diseases such as measles, it is assumed that the infection rate is time periodic. After establishing the well-posedness of the initial-boundary value problem, we study existence of time periodic solutions of the model by using a fixed point theorem. Some numerical simulations are presented to illustrate the obtained results.

Citation: Hao Kang, Qimin Huang, Shigui Ruan. Periodic solutions of an age-structured epidemic model with periodic infection rate. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4955-4972. doi: 10.3934/cpaa.2020220
References:
[1]

R. Anderson and R. May, Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes, Epidemiol. Infect., 94 (1985), 365-436. 

[2]

V. Andreasen, Disease regulation of age-structured host populations, Theor. Popul. Biol., 36 (1989), 214-239.  doi: 10.1016/0040-5809(89)90031-2.

[3]

N. Bacaër, Approximation of the basic reproduction number $R_0$ for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69 (2007), 1067-1091.  doi: 10.1007/s11538-006-9166-9.

[4]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.  doi: 10.1007/s00285-006-0015-0.

[5]

D. Bentil and J. Murray, Modelling bovine tuberculosis in badgers, J. Anim. Ecol., 239–250.

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer Science and Business Media, New York, 2010.

[7]

S. Busenberg, M. Iannelli and H. Thieme, Dynamics of an age-structured epidemic model, in Dynamical Systems, Proceedings of the Special Program at Nankai Institute of Mathematics, World Scientific Pub., Singapore, (1993), 1–19. doi: 10.1007/978-3-642-75301-5_1.

[8]

S. N. BusenbergM. Iannelli and H. R. Thieme, Global behavior of an age-structured epidemic model, SIAM J. Math. Anal., 22 (1991), 1065-1080.  doi: 10.1137/0522069.

[9]

Y. ChaM. Iannelli and F. A. Milner, Existence and uniqueness of endemic states for the age-structured S-I-R epidemic model, Math. Biosci., 150 (1998), 177-190.  doi: 10.1016/S0025-5564(98)10006-8.

[10]

D. J. EarnP. RohaniB. M. Bolker and B. T. Grenfell, A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), 667-670. 

[11]

Z. FengW. Huang and C. Castillo-Chavez, Global behavior of a multi-group sis epidemic model with age structure, J. Differ. Equ., 218 (2005), 292-324.  doi: 10.1016/j.jde.2004.10.009.

[12]

D. Greenhalgh, Analytical results on the stability of age-structured recurrent epidemic models, Math. Med. Biol. JIMA, 4 (1987), 109-144. 

[13]

H. W. Hethcote, Optimal ages of vaccination for measles, Math. Biosci., 89 (1988), 29-52.  doi: 10.1016/0025-5564(88)90111-3.

[14]

H. W. Hethcote and S. A. Levin, Periodicity in epidemiological models, in Applied Mathematical Ecology (eds. S. A. Levin, T. G. Hallam and L. J. Gross), Biomathematics Vol. 18, Springer, Berlin, (1989), 193–211. doi: 10.1007/978-3-642-61317-3_8.

[15]

F. Hoppensteadt, An age dependent epidemic model, J. Franklin Inst., 297 (1974), 325-333. 

[16]

J. HuangS. RuanX. Wu and X. Zhou, Seasonal transmission dynamics of measles in China, Theory Biosci., 137 (2018), 185-195.  doi: 10.1007/s11538-020-00747-6.

[17]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini editori e stampatori, Pisa, 1995.

[18]

M. IannelliM. Y. Kim and E. J. Park, Asymptotic behavior for an sis epidemic model and its approximation, Nonlinear Anal. Theory Meth. Appl., 35 (1999), 797-814.  doi: 10.1016/S0362-546X(97)00597-X.

[19]

H. Inaba, Threshold and stability results for an age-structured epidemic model, J. Math. Biol., 28 (1990), 411-434.  doi: 10.1007/BF00178326.

[20]

H. Inaba, Kermack and McKendrick revisited: the variable susceptibility model for infectious diseases, Japan J. Indust. Appl. Math., 18 (2001), 273-292.  doi: 10.1007/BF03168575.

[21]

H. Inaba, The Malthusian parameter and is $R_0$ for heterogeneous populations in periodic environments, Math. Biosci. Eng., 9 (2012), 313-346.  doi: 10.3934/mbe.2012.9.313.

[22]

H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments, J. Math. Biol., 65 (2012), 309-348.  doi: 10.1007/s00285-011-0463-z.

[23]

H. Inaba, Age-structured Population Dynamics in Demography and Epidemiology, Springer, New York, 2017. doi: 10.1007/978-981-10-0188-8.

[24]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700-721. 

[25]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. Ⅱ. The problem of endemicity, Proc. R. Soc. Lond. A, 138 (1932), 55-83. 

[26]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. Ⅲ. Further studies of the problem of endemicity, Proc. R. Soc. Lond. A, 141 (1933), 94-122. 

[27]

M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

[28]

M. Kubo and M. Langlais, Periodic solutions for nonlinear population dynamics models with age-dependence and spatial structure, J. Differ. Equ., 109 (1994), 274-294.  doi: 10.1006/jdeq.1994.1050.

[29]

T. Kuniya, Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficients, Appl. Math. Lett., 27 (2014), 15-20.  doi: 10.1016/j.aml.2013.08.008.

[30]

T. Kuniya and M. Iannelli, $R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission, Math. Biosci. Eng., 11 (2014), 929-945.  doi: 10.3934/mbe.2014.11.929.

[31]

T. Kuniya and H. Inaba, Endemic threshold results for an age-structured SIS epidemic model with periodic parameters, J. Math. Anal. Appl., 402 (2013), 477-492.  doi: 10.1016/j.jmaa.2013.01.044.

[32]

M. Langlais and S. Busenberg, Global behaviour in age structured SIS models with seasonal periodicities and vertical transmission, J. Math. Anal. Appl., 213 (1997), 511-533.  doi: 10.1006/jmaa.1997.5554.

[33]

X.-Z. LiG. Gupur and G.-T. Zhu, Threshold and stability results for an age-structured SEIR epidemic model, Comput. Math. Appl., 42 (2001), 883-907.  doi: 10.1016/S0898-1221(01)00206-1.

[34]

I. Marek, Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math., 19 (1970), 607-628.  doi: 10.1137/0119060.

[35]

I. Sawashima, On spectral properties of some positive operators, Natural Sci. Rep. Ochanomizu Univ., 15 (1964), 53-64. 

[36]

D. Schenzle, An age-structured model of pre-and post-vaccination measles transmission, Math. Med. Biol. JIMA, 1 (1984), 169-191. 

[37]

H. R. Thieme, Renewal theorems for linear periodic Volterra integral equations, J. Integral Equ., 7 (1984), 253-277. 

[38]

D. W. Tudor, An age-dependent epidemic model with application to measles, Math. Biosci., 73 (1985), 131-147.  doi: 10.1016/0025-5564(85)90081-1.

[39]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ., 20 (2008), 699-717.  doi: 10.1007/s10884-008-9111-8.

show all references

References:
[1]

R. Anderson and R. May, Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes, Epidemiol. Infect., 94 (1985), 365-436. 

[2]

V. Andreasen, Disease regulation of age-structured host populations, Theor. Popul. Biol., 36 (1989), 214-239.  doi: 10.1016/0040-5809(89)90031-2.

[3]

N. Bacaër, Approximation of the basic reproduction number $R_0$ for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69 (2007), 1067-1091.  doi: 10.1007/s11538-006-9166-9.

[4]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.  doi: 10.1007/s00285-006-0015-0.

[5]

D. Bentil and J. Murray, Modelling bovine tuberculosis in badgers, J. Anim. Ecol., 239–250.

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer Science and Business Media, New York, 2010.

[7]

S. Busenberg, M. Iannelli and H. Thieme, Dynamics of an age-structured epidemic model, in Dynamical Systems, Proceedings of the Special Program at Nankai Institute of Mathematics, World Scientific Pub., Singapore, (1993), 1–19. doi: 10.1007/978-3-642-75301-5_1.

[8]

S. N. BusenbergM. Iannelli and H. R. Thieme, Global behavior of an age-structured epidemic model, SIAM J. Math. Anal., 22 (1991), 1065-1080.  doi: 10.1137/0522069.

[9]

Y. ChaM. Iannelli and F. A. Milner, Existence and uniqueness of endemic states for the age-structured S-I-R epidemic model, Math. Biosci., 150 (1998), 177-190.  doi: 10.1016/S0025-5564(98)10006-8.

[10]

D. J. EarnP. RohaniB. M. Bolker and B. T. Grenfell, A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), 667-670. 

[11]

Z. FengW. Huang and C. Castillo-Chavez, Global behavior of a multi-group sis epidemic model with age structure, J. Differ. Equ., 218 (2005), 292-324.  doi: 10.1016/j.jde.2004.10.009.

[12]

D. Greenhalgh, Analytical results on the stability of age-structured recurrent epidemic models, Math. Med. Biol. JIMA, 4 (1987), 109-144. 

[13]

H. W. Hethcote, Optimal ages of vaccination for measles, Math. Biosci., 89 (1988), 29-52.  doi: 10.1016/0025-5564(88)90111-3.

[14]

H. W. Hethcote and S. A. Levin, Periodicity in epidemiological models, in Applied Mathematical Ecology (eds. S. A. Levin, T. G. Hallam and L. J. Gross), Biomathematics Vol. 18, Springer, Berlin, (1989), 193–211. doi: 10.1007/978-3-642-61317-3_8.

[15]

F. Hoppensteadt, An age dependent epidemic model, J. Franklin Inst., 297 (1974), 325-333. 

[16]

J. HuangS. RuanX. Wu and X. Zhou, Seasonal transmission dynamics of measles in China, Theory Biosci., 137 (2018), 185-195.  doi: 10.1007/s11538-020-00747-6.

[17]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini editori e stampatori, Pisa, 1995.

[18]

M. IannelliM. Y. Kim and E. J. Park, Asymptotic behavior for an sis epidemic model and its approximation, Nonlinear Anal. Theory Meth. Appl., 35 (1999), 797-814.  doi: 10.1016/S0362-546X(97)00597-X.

[19]

H. Inaba, Threshold and stability results for an age-structured epidemic model, J. Math. Biol., 28 (1990), 411-434.  doi: 10.1007/BF00178326.

[20]

H. Inaba, Kermack and McKendrick revisited: the variable susceptibility model for infectious diseases, Japan J. Indust. Appl. Math., 18 (2001), 273-292.  doi: 10.1007/BF03168575.

[21]

H. Inaba, The Malthusian parameter and is $R_0$ for heterogeneous populations in periodic environments, Math. Biosci. Eng., 9 (2012), 313-346.  doi: 10.3934/mbe.2012.9.313.

[22]

H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments, J. Math. Biol., 65 (2012), 309-348.  doi: 10.1007/s00285-011-0463-z.

[23]

H. Inaba, Age-structured Population Dynamics in Demography and Epidemiology, Springer, New York, 2017. doi: 10.1007/978-981-10-0188-8.

[24]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700-721. 

[25]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. Ⅱ. The problem of endemicity, Proc. R. Soc. Lond. A, 138 (1932), 55-83. 

[26]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. Ⅲ. Further studies of the problem of endemicity, Proc. R. Soc. Lond. A, 141 (1933), 94-122. 

[27]

M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

[28]

M. Kubo and M. Langlais, Periodic solutions for nonlinear population dynamics models with age-dependence and spatial structure, J. Differ. Equ., 109 (1994), 274-294.  doi: 10.1006/jdeq.1994.1050.

[29]

T. Kuniya, Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficients, Appl. Math. Lett., 27 (2014), 15-20.  doi: 10.1016/j.aml.2013.08.008.

[30]

T. Kuniya and M. Iannelli, $R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission, Math. Biosci. Eng., 11 (2014), 929-945.  doi: 10.3934/mbe.2014.11.929.

[31]

T. Kuniya and H. Inaba, Endemic threshold results for an age-structured SIS epidemic model with periodic parameters, J. Math. Anal. Appl., 402 (2013), 477-492.  doi: 10.1016/j.jmaa.2013.01.044.

[32]

M. Langlais and S. Busenberg, Global behaviour in age structured SIS models with seasonal periodicities and vertical transmission, J. Math. Anal. Appl., 213 (1997), 511-533.  doi: 10.1006/jmaa.1997.5554.

[33]

X.-Z. LiG. Gupur and G.-T. Zhu, Threshold and stability results for an age-structured SEIR epidemic model, Comput. Math. Appl., 42 (2001), 883-907.  doi: 10.1016/S0898-1221(01)00206-1.

[34]

I. Marek, Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math., 19 (1970), 607-628.  doi: 10.1137/0119060.

[35]

I. Sawashima, On spectral properties of some positive operators, Natural Sci. Rep. Ochanomizu Univ., 15 (1964), 53-64. 

[36]

D. Schenzle, An age-structured model of pre-and post-vaccination measles transmission, Math. Med. Biol. JIMA, 1 (1984), 169-191. 

[37]

H. R. Thieme, Renewal theorems for linear periodic Volterra integral equations, J. Integral Equ., 7 (1984), 253-277. 

[38]

D. W. Tudor, An age-dependent epidemic model with application to measles, Math. Biosci., 73 (1985), 131-147.  doi: 10.1016/0025-5564(85)90081-1.

[39]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ., 20 (2008), 699-717.  doi: 10.1007/s10884-008-9111-8.

Figure 1.  Behavior of the model when $ \mathscr{R}_0<1 $: (a) Total exposed population $ \int_{0}^{80} e(t , a)da $ versus time $ t $; (b) Total infected population $ \int_{0}^{80} i(t , a)da $ versus time $ t. $
Figure 2.  Behavior of solutions when $ \mathscr{R}_0>1 $ and the vaccination rate is zero: (a) Total susceptible population $ \int_{0}^{80} s(t , a)da $ versus time t; (b) Total exposed population $ \int_{0}^{80} e(t , a)da $ versus time t; (c) Total infected population $ \int_{0}^{80} i(t , a)da $ versus time $ t. $
Figure 3.  Effect of vaccination on the behavior of the solutions (the total exposed population $ \int_{0}^{80} e(t , a)da $ and the total infected population $ \int_{0}^{80} i(t , a)da $ versus time $ t $) and different vaccination rate $ \rho $: (a) $ \rho = 0 $; (b) $ \rho = 0.5 $; (c) $ \rho = 0.7 $; (d) $ \rho = 0.9 $. All other parameters are fixed
Figure 4.  Plots of the infected population $ i(t, a) $ and exposed population $ e(t, a) $ versus age $ a $ and time $ t $ (in three periods)
Figure 5.  Age distribution of the infected population at the peak of a periodic solution ($ t = 60.3 $)
[1]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[2]

Bin-Guo Wang, Wan-Tong Li, Liang Zhang. An almost periodic epidemic model with age structure in a patchy environment. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 291-311. doi: 10.3934/dcdsb.2016.21.291

[3]

C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819-841. doi: 10.3934/mbe.2012.9.819

[4]

Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170

[5]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[6]

Gabriela Marinoschi. Identification of transmission rates and reproduction number in a SARS-CoV-2 epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022128

[7]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[8]

Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba. A multi-group SIR epidemic model with age structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3515-3550. doi: 10.3934/dcdsb.2016109

[9]

Mamadou L. Diagne, Ousmane Seydi, Aissata A. B. Sy. A two-group age of infection epidemic model with periodic behavioral changes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2057-2092. doi: 10.3934/dcdsb.2019202

[10]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[11]

Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, 2021, 29 (3) : 2325-2358. doi: 10.3934/era.2020118

[13]

Zhisheng Shuai, P. van den Driessche. Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 393-411. doi: 10.3934/mbe.2012.9.393

[14]

Zhigui Lin, Yinan Zhao, Peng Zhou. The infected frontier in an SEIR epidemic model with infinite delay. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2355-2376. doi: 10.3934/dcdsb.2013.18.2355

[15]

Zhiting Xu. Traveling waves for a diffusive SEIR epidemic model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 871-892. doi: 10.3934/cpaa.2016.15.871

[16]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[17]

Markus Thäter, Kurt Chudej, Hans Josef Pesch. Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth. Mathematical Biosciences & Engineering, 2018, 15 (2) : 485-505. doi: 10.3934/mbe.2018022

[18]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[19]

Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1141-1157. doi: 10.3934/mbe.2017059

[20]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (329)
  • HTML views (88)
  • Cited by (0)

Other articles
by authors

[Back to Top]