A system of Boundary-Domain Integral Equations is derived from the mixed (Dirichlet-Neumann) boundary value problem for the diffusion equation in inhomogeneous media defined on an unbounded domain. This paper extends the work introduced in [
Citation: |
[1] |
M. A. Al-Jawary, J. Ravnik and L. C. Wrobel, Boundary element formulations for the numerical solution of two-dimensional diffusion problems with variable coefficients, Comput. Math. Appl., 64 (2012), 2695-2711.
doi: 10.1016/j.camwa.2012.08.002.![]() ![]() ![]() |
[2] |
A. Beshley, B. Chapko and T. Johansson, On the alternating method and boundary-domain integrals for elliptic Cauchy problems, Comput. Math. Appl., 78 (2019), 3514-3526.
doi: 10.1016/j.camwa.2019.05.025.![]() ![]() ![]() |
[3] |
A. Beshley, R. Chapko and B. T. Johansson, An integral equation method for the numerical solution of a Dirichlet problem for second-order elliptic equations with variable coefficients, J. Eng. Math., 112 (2018), 63-73.
doi: 10.1007/s10665-018-9965-7.![]() ![]() ![]() |
[4] |
R. Chapko and B. T. Johansson, A boundary integral equation method for numerical solution of parabolic and hyperbolic Cauchy problems, Appl. Numer. Math., 129 (2018), 104-119.
doi: 10.1016/j.apnum.2018.03.004.![]() ![]() ![]() |
[5] |
J. Choi and D. Kim, Estimates for Green functions of Stokes systems in two dimensional domains., J. Math. Anal. Appl., 471 (2019), 102-125.
doi: 10.1016/j.jmaa.2018.10.067.![]() ![]() ![]() |
[6] |
O. Chkadua, S. E. Mikhailov and D. Natroshvili, Singular localised boundary-domain integral equations of acoustic scattering by inhomogeneous anisotropic obstacle, Math. Method. Appl. Sci., 41 (2018), 8033-8058.
doi: 10.1002/mma.5268.![]() ![]() ![]() |
[7] |
O. Chkadua, S. E. Mikhailov and D. Natroshvili, Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, Ⅰ: Equivalence and invertibility, J. Integral Equ. Appl., 21 (2009), 499-543.
doi: 10.1216/JIE-2009-21-4-499.![]() ![]() ![]() |
[8] |
O. Chkadua, S. E. Mikhailov and D. Natroshvili, Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, Ⅱ: Solution regularity and asymptotics, J. Integral Equ. Appl., 22 (2010), 19-37.
doi: 10.1216/JIE-2010-22-1-19.![]() ![]() ![]() |
[9] |
O. Chkadua, S. E. Mikhailov and D. Natroshvili, Analysis of direct segregated boundary-domain integral equations for variable-coefficient mixed BVPs in exterior domains, Anal. Appl., 11 (2013), 1-33.
doi: 10.1142/S0219530513500061.![]() ![]() ![]() |
[10] |
M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal., 19 (1988), 613-626.
doi: 10.1137/0519043.![]() ![]() ![]() |
[11] |
M. Costabel and E. P. Stephan, An improved boundary element Galerkin method for three dimensional crack problems, Integr. Equat. Oper. Th., 10 (1987), 467-507.
doi: 10.1007/BF01201149.![]() ![]() ![]() |
[12] |
T. T. Dufera and S. E. Mikhailov, Analysis of Boundary-Domain Integral Equations for Variable-Coefficient Dirichlet BVP in 2D In: Integral Methods in Science and Engineering: Theoretical and Computational Advances., C. Constanda and A. Kirsh, eds. Springer (Birkhäuser): Boston, (2015), 163-175.
![]() |
[13] |
O. Gonzalez, A theorem on the surface traction field in potential representations of Stokes flow, SIAM J. Appl. Math., 75 (2015), 1578-1598.
doi: 10.1137/140978119.![]() ![]() ![]() |
[14] |
R. Grzhibovskis, Mikhailov S.E. and Rjasanow S.: Numerics of boundary-domain integral and integro-differential equations for BVP with variable coefficient in 3D, Comput. Mech., 51 (2013), 495-503.
doi: 10.1007/s00466-012-0777-8.![]() ![]() ![]() |
[15] |
N. M. Gunter, Potential Theory and Its Applications to Basic Problems of Mathematical Physics, Frederick Ungar, New York, 1967.
![]() ![]() |
[16] |
G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer, Berlin, 2008.
doi: 10.1007/978-3-540-68545-6.![]() ![]() ![]() |
[17] |
J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, 1973.
![]() ![]() |
[18] |
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.
![]() ![]() |
[19] |
S. E. Mikhailov, Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains, J. Math. Anal. Appl., 378 (2011), 324-342.
doi: 10.1016/j.jmaa.2010.12.027.![]() ![]() ![]() |
[20] |
S. E. Mikhailov, Analysis of Segregated Boundary-Domain Integral Equations for BVPs with Non-smooth Coefficient on Lipschitz Domains, Bound Value Probl, 87 (2018), 1-52.
doi: 10.1186/s13661-018-0992-0.![]() ![]() ![]() |
[21] |
S. E. Mikhailov, Localized boundary-domain integral formulations for problems with variable coefficients, Engineering Analysis with Boundary Elements, 26 (2002), 681-690.
![]() |
[22] |
S. E. Mikhailov and C. F. Portillo, Analysis of Boundary-Domain Integral Equations to the Mixed BVP for a compressible Stokes system with variable viscosity, Communications on Pure and Applied Analysis, 18 (2019): 3059–3088.
doi: 10.3934/cpaa.2019137.![]() ![]() ![]() |
[23] |
S. E. Mikhailov and C. F. Portillo, Analysis of boundary-domain integral equations based on a new parametrix for the mixed diffusion BVP with variable coefficient in an interior Lipschitz domain, J. Integral Equ. Appl., 87 (2018).
doi: 10.1186/s13661-018-0992-0.![]() ![]() ![]() |
[24] |
A. Pomp, The Boundary-Domain Integral Method for Elliptic Systems: With Application to Shells, Springer-Verlag, Berlin, 1998.
doi: 10.1007/BFb0094576.![]() ![]() ![]() |
[25] |
C. F. Portillo, Boundary-Domain Integral Equations for the diffusion equation in inhomogeneous media based on a new family of parametrices, Complex Var. Elliptic, 65 (2020), 558-572.
doi: 10.1080/17476933.2019.1591382.![]() ![]() ![]() |
[26] |
C. F. Portillo and Z. W. Woldemicheal, On the existence of solution of the boundary-domain integral equation system derived from the 2D Dirichlet problem for the diffusion equation with variable coefficient using a novel parametrix, Complex Var. Elliptic, (2019), 1–15.
doi: 10.1080/17476933.2019.1687457.![]() ![]() |
[27] |
J. Ravnik and J. Tibaut, Fast boundary-domain integral method for heat transfer simulations, Eng. Anal. Bound. Elem., 99 (2019), 222-232.
doi: 10.1016/j.enganabound.2018.12.003.![]() ![]() ![]() |
[28] |
J. Sladek, V. Sladek and Ch .Zhang, Local integro-differential equations with domain elements for the numerical solution of partial differential equations with variable coefficients, J. Eng. Math., 51 (2005), 261-282.
![]() |
[29] |
O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems, Springer, 2007.
doi: 10.1007/978-0-387-68805-3.![]() ![]() ![]() |