    November  2020, 19(11): 5269-5283. doi: 10.3934/cpaa.2020237

## Monotonicity of solutions for a class of nonlocal Monge-Ampère problem

 School of Mathematics and Statistics and Hubei Key Laboratory of Mathematical, Sciences, Central China Normal University, Wuhan, 430079, China, Department of Mathematical Sciences, Yeshiva University, New York, NY, USA

Received  April 2020 Revised  June 2020 Published  November 2020 Early access  September 2020

Fund Project: This work was supported by Natural Science Foundation of China (Grant No.11771166), Hubei Key Laboratory of Mathematical Sciences, Program for Changjiang Scholars and Innovative Research Team in University #IRT_17R46 and China Scholarship Council

In this paper, we consider nonlinear problems involving nonlocal Monge-Ampère operators. By using a sliding method, we establish monotonicity of positive solutions for nonlocal Monge-Ampère problems both in an infinite slab and in an upper half space. During this process, an important idea we applied is to estimate the singular integrals defining the nonlocal Monge-Ampère operator along a sequence of approximate maximum points. It allows us to assume weaker conditions on nonlinear terms. Another idea is to employ a generalized average inequality which plays an important role and greatly simplify the process of the sliding.

Citation: Yahui Niu. Monotonicity of solutions for a class of nonlocal Monge-Ampère problem. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5269-5283. doi: 10.3934/cpaa.2020237
##### References:
  H. Berestycki, L. Caffarelli and L. Nirenberg, Inequalitites for second-order elliptic equations with applications to unbounded domains, I, Duke Math. J., 81 (1996), 467-494.  doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar  H. Berestycki, L. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Commun. Pure Appl. Math., 50 (1997), 1089-1111.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar  H. Berestycki and L. Nirenberg, Monotonicity, symmetry and anti- symmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.  doi: 10.1016/0393-0440(88)90006-X.  Google Scholar  H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semi-linear elliptic equations in cylindrical domains, Analysis, et cetera, Academic Press, Boston, MA, (1990), 115–164. Google Scholar  H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.  doi: 10.1007/BF01244896.  Google Scholar  L. Caffarelli and F. Charro, On a fractional Monge-Ampère operator, Ann. PDE., 1 (2015), 47pp. doi: 10.1007/s40818-015-0005-x.  Google Scholar  L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. PDE., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar  L. Caffarelli and L. Silvestre, A nonlocal Monge-Ampère equation, Commun. Anal. Geom., 24 (2016), 307-335.  doi: 10.4310/CAG.2016.v24.n2.a4.  Google Scholar  W. Chen and C. Li, Maximum principle for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar  W. Chen, C. Li and and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar  W. Chen, C. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co, 2019. Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar  W. Chen and S. Qi, Direct methods on fractional equations, Disc. Cont. Dyna. Sys., 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.  Google Scholar  S. Dipierro, N. Soave and E. Valdinoci, On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Math. Ann., 369 (2017), 1283-1326.  doi: 10.1007/s00208-016-1487-x.  Google Scholar  Z. Liu and W. Chen, Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains, arXiv: 1905.06493. Google Scholar  L. Wu and W. Chen, The sliding method for the fractional p-Laplacian, Adv. Math., 361 (2020), 106933. doi: 10.1016/j.aim.2019.106933.  Google Scholar  L. Wu and W. Chen, Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities, arXiv: 1905.09999. Google Scholar

show all references

##### References:
  H. Berestycki, L. Caffarelli and L. Nirenberg, Inequalitites for second-order elliptic equations with applications to unbounded domains, I, Duke Math. J., 81 (1996), 467-494.  doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar  H. Berestycki, L. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Commun. Pure Appl. Math., 50 (1997), 1089-1111.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar  H. Berestycki and L. Nirenberg, Monotonicity, symmetry and anti- symmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.  doi: 10.1016/0393-0440(88)90006-X.  Google Scholar  H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semi-linear elliptic equations in cylindrical domains, Analysis, et cetera, Academic Press, Boston, MA, (1990), 115–164. Google Scholar  H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.  doi: 10.1007/BF01244896.  Google Scholar  L. Caffarelli and F. Charro, On a fractional Monge-Ampère operator, Ann. PDE., 1 (2015), 47pp. doi: 10.1007/s40818-015-0005-x.  Google Scholar  L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. PDE., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar  L. Caffarelli and L. Silvestre, A nonlocal Monge-Ampère equation, Commun. Anal. Geom., 24 (2016), 307-335.  doi: 10.4310/CAG.2016.v24.n2.a4.  Google Scholar  W. Chen and C. Li, Maximum principle for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar  W. Chen, C. Li and and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar  W. Chen, C. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co, 2019. Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar  W. Chen and S. Qi, Direct methods on fractional equations, Disc. Cont. Dyna. Sys., 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.  Google Scholar  S. Dipierro, N. Soave and E. Valdinoci, On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Math. Ann., 369 (2017), 1283-1326.  doi: 10.1007/s00208-016-1487-x.  Google Scholar  Z. Liu and W. Chen, Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains, arXiv: 1905.06493. Google Scholar  L. Wu and W. Chen, The sliding method for the fractional p-Laplacian, Adv. Math., 361 (2020), 106933. doi: 10.1016/j.aim.2019.106933.  Google Scholar  L. Wu and W. Chen, Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities, arXiv: 1905.09999. Google Scholar
  Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053  Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069  Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825  Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations & Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015  Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002  Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121  Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991  Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060  Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, 2021, 20 (2) : 915-931. doi: 10.3934/cpaa.2020297  Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559  Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061  Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221  Shuyu Gong, Ziwei Zhou, Jiguang Bao. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4921-4936. doi: 10.3934/cpaa.2020218  Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058  Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267  Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59  Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347  Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705  Ziwei Zhou, Jiguang Bao, Bo Wang. A Liouville theorem of parabolic Monge-AmpÈre equations in half-space. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1561-1578. doi: 10.3934/dcds.2020331  Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

2020 Impact Factor: 1.916