-
Previous Article
Approximations of stochastic 3D tamed Navier-Stokes equations
- CPAA Home
- This Issue
- Next Article
Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency
College of Sciences, Hohai University, No.1 Xikang Road, Nanjing, Jiangsu, 210098, China |
In this paper, we first study the strong Birkhoff Ergodic Theorem for subharmonic functions with the Brjuno-Rüssmann shift on the Torus. Then, we apply it to prove the large deviation theorems for the finite scale Dirichlet determinants of quasi-periodic analytic Jacobi operators with this frequency. It shows that the Brjuno-Rüssmann function, which reflects the irrationality of the frequency, plays the key role in these theorems via the smallest deviation. At last, as an application, we obtain a distribution of the eigenvalues of the Jacobi operators with Dirichlet boundary conditions, which also depends on the smallest deviation, essentially on the irrationality of the frequency.
References:
[1] |
A. Avila and S. Jitomirskaya,
The Ten Martini Problem, Ann. Math., 170 (2009), 303-342.
doi: 10.4007/annals.2009.170.303. |
[2] |
A. Avila, S. Jitomirskaya and C. A. Marx,
Spectral theory of extended Harper's model and a question by Erdös and Szekeres, Inv. Math., 210 (2017), 1-57.
doi: 10.1016/j.aim.2017.08.026. |
[3] |
A. Avila, Y. Last, M. Shamis and Q. Zhou, On the abominable properties of the Almost Mathieu operator with well approximated frequencies, In preparation. |
[4] |
A. Avila, J. You and Z. Zhou,
Sharp Phase transitions for the almost Mathieu operator, Duke Math., 166 (2017), 2697-2718.
doi: 10.1215/00127094-2017-0013. |
[5] |
J. Bourgain and S. Jitomirskaya,
Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, J. Stat. Phys., 108 (2002), 1203-1218.
doi: 10.1023/A:1019751801035. |
[6] |
J. Bourgain and M. Goldstein,
On nonperturbative localization with quasi-periodic potential, Ann. Math., 152 (2000), 835-879.
doi: 10.2307/2661356. |
[7] |
J. Bourgain, M. Goldstein and W. Schlag,
Anderson localization for Schrödinger operators on $\mathbb{Z}^2$ with potentials given by the skew-shift, Commun. Math. Phys., 220 (2001), 583-621.
doi: 10.1007/PL00005570. |
[8] |
I. Binder and M. Voda,
An estimate on the number of eigenvalues of a quasiperiodic Jacobi matrix of size n contained in an interval of size $n^{-C}$, J. Spectr. Theory, 3 (2013), 1-45.
doi: 10.4171/JST/36. |
[9] |
I. Binder and M. Voda, On optimal separation of eigenvalues for a quasiperiodic Jacobi matrix, Commun. Math. Phys., 325 (2014), 1063-1106.
doi: 10.1007/s00220-013-1836-5. |
[10] |
M. Goldstein, D. Damanik, W. Schlag and M. Voda,
Homogeneity of the spectrum for quasi-perioidic Schrödinger operators, J. Eur. Math. Soc., 20 (2018), 3073-3111.
doi: 10.4171/JEMS/829. |
[11] |
M. Goldstein and W. Schlag,
Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. Math., 2 (2001), 155-203.
doi: 10.2307/3062114. |
[12] |
M. Goldstein and W. Schlag,
Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues, Geom. Funct. Anal., 18 (2008), 755-869.
doi: 10.1007/s00039-008-0670-y. |
[13] |
M. Goldstein and W. Schlag,
On resonances and the formation of gaps in the spectrum of quasi-periodic Schrödinger equations, Ann. Math., 173 (2011), 337-475.
doi: 10.4007/annals.2011.173.1.9. |
[14] |
R. Han,
Dry Ten Martini problem for the non-self-dual extended Harper's model, Trans. Am. Math. Soc., 370 (2018), 197-217.
doi: 10.1090/tran/6989. |
[15] |
R. Han and S. Zhang, Optimal Large Deviation Estimates and Hölder Regularity of the Lyapunov Exponents for Quasi-periodic Schrödinger Cocycles, arXiv: 1803.02035 |
[16] |
S. Jitomirskaya, D. A. Koslover and M. S. Schulteis,
Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles, Ergod. Theor. Dyn. Syst., 29 (2009), 1881-1905.
doi: 10.1017/S0143385709000704. |
[17] |
S. Jitomirskaya, D. A. Koslover and M. S. Schulteis,
Localization for a family of one-dimensional quasiperiodic operators of magnetic origin, Ann. Henri. Poincar., 6 (2005), 103-125.
doi: 10.1007/s00023-005-0200-5. |
[18] |
S. Jitomirskaya and C. A. Marx,
Continuity of the Lyapunov Exponent for analytic quasi-perodic cocycles with singularities, J. Fix. Point Theory A., 10 (2011), 129-146.
doi: 10.1007/s11784-011-0055-y. |
[19] |
Ya. B. Levin, Lectures on Entire Functions, AMS, Providence, RI, 1996. |
[20] |
K. Tao,
Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators, Bulletin de la SMF, 142 (2014), 635-671.
doi: 10.24033/bsmf.2675. |
[21] |
K. Tao, Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles, arXiv: 1805.00431. |
[22] |
J. You and S. Zhang,
Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schrödinger cocycles with week Liouville frequency, Ergod. Theor. Dyn. Syst., 34 (2014), 1395-1408.
doi: 10.1017/etds.2013.4. |
show all references
References:
[1] |
A. Avila and S. Jitomirskaya,
The Ten Martini Problem, Ann. Math., 170 (2009), 303-342.
doi: 10.4007/annals.2009.170.303. |
[2] |
A. Avila, S. Jitomirskaya and C. A. Marx,
Spectral theory of extended Harper's model and a question by Erdös and Szekeres, Inv. Math., 210 (2017), 1-57.
doi: 10.1016/j.aim.2017.08.026. |
[3] |
A. Avila, Y. Last, M. Shamis and Q. Zhou, On the abominable properties of the Almost Mathieu operator with well approximated frequencies, In preparation. |
[4] |
A. Avila, J. You and Z. Zhou,
Sharp Phase transitions for the almost Mathieu operator, Duke Math., 166 (2017), 2697-2718.
doi: 10.1215/00127094-2017-0013. |
[5] |
J. Bourgain and S. Jitomirskaya,
Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, J. Stat. Phys., 108 (2002), 1203-1218.
doi: 10.1023/A:1019751801035. |
[6] |
J. Bourgain and M. Goldstein,
On nonperturbative localization with quasi-periodic potential, Ann. Math., 152 (2000), 835-879.
doi: 10.2307/2661356. |
[7] |
J. Bourgain, M. Goldstein and W. Schlag,
Anderson localization for Schrödinger operators on $\mathbb{Z}^2$ with potentials given by the skew-shift, Commun. Math. Phys., 220 (2001), 583-621.
doi: 10.1007/PL00005570. |
[8] |
I. Binder and M. Voda,
An estimate on the number of eigenvalues of a quasiperiodic Jacobi matrix of size n contained in an interval of size $n^{-C}$, J. Spectr. Theory, 3 (2013), 1-45.
doi: 10.4171/JST/36. |
[9] |
I. Binder and M. Voda, On optimal separation of eigenvalues for a quasiperiodic Jacobi matrix, Commun. Math. Phys., 325 (2014), 1063-1106.
doi: 10.1007/s00220-013-1836-5. |
[10] |
M. Goldstein, D. Damanik, W. Schlag and M. Voda,
Homogeneity of the spectrum for quasi-perioidic Schrödinger operators, J. Eur. Math. Soc., 20 (2018), 3073-3111.
doi: 10.4171/JEMS/829. |
[11] |
M. Goldstein and W. Schlag,
Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. Math., 2 (2001), 155-203.
doi: 10.2307/3062114. |
[12] |
M. Goldstein and W. Schlag,
Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues, Geom. Funct. Anal., 18 (2008), 755-869.
doi: 10.1007/s00039-008-0670-y. |
[13] |
M. Goldstein and W. Schlag,
On resonances and the formation of gaps in the spectrum of quasi-periodic Schrödinger equations, Ann. Math., 173 (2011), 337-475.
doi: 10.4007/annals.2011.173.1.9. |
[14] |
R. Han,
Dry Ten Martini problem for the non-self-dual extended Harper's model, Trans. Am. Math. Soc., 370 (2018), 197-217.
doi: 10.1090/tran/6989. |
[15] |
R. Han and S. Zhang, Optimal Large Deviation Estimates and Hölder Regularity of the Lyapunov Exponents for Quasi-periodic Schrödinger Cocycles, arXiv: 1803.02035 |
[16] |
S. Jitomirskaya, D. A. Koslover and M. S. Schulteis,
Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles, Ergod. Theor. Dyn. Syst., 29 (2009), 1881-1905.
doi: 10.1017/S0143385709000704. |
[17] |
S. Jitomirskaya, D. A. Koslover and M. S. Schulteis,
Localization for a family of one-dimensional quasiperiodic operators of magnetic origin, Ann. Henri. Poincar., 6 (2005), 103-125.
doi: 10.1007/s00023-005-0200-5. |
[18] |
S. Jitomirskaya and C. A. Marx,
Continuity of the Lyapunov Exponent for analytic quasi-perodic cocycles with singularities, J. Fix. Point Theory A., 10 (2011), 129-146.
doi: 10.1007/s11784-011-0055-y. |
[19] |
Ya. B. Levin, Lectures on Entire Functions, AMS, Providence, RI, 1996. |
[20] |
K. Tao,
Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators, Bulletin de la SMF, 142 (2014), 635-671.
doi: 10.24033/bsmf.2675. |
[21] |
K. Tao, Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles, arXiv: 1805.00431. |
[22] |
J. You and S. Zhang,
Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schrödinger cocycles with week Liouville frequency, Ergod. Theor. Dyn. Syst., 34 (2014), 1395-1408.
doi: 10.1017/etds.2013.4. |
[1] |
Claire Chavaudret, Stefano Marmi. Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition. Journal of Modern Dynamics, 2012, 6 (1) : 59-78. doi: 10.3934/jmd.2012.6.59 |
[2] |
Claire Chavaudret, Stefano Marmi. Erratum: Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition. Journal of Modern Dynamics, 2015, 9: 285-287. doi: 10.3934/jmd.2015.9.285 |
[3] |
Kai Tao. Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1495-1533. doi: 10.3934/dcds.2021162 |
[4] |
Yuri Kifer. Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2687-2716. doi: 10.3934/dcds.2018113 |
[5] |
Andreas Strömbergsson. On the deviation of ergodic averages for horocycle flows. Journal of Modern Dynamics, 2013, 7 (2) : 291-328. doi: 10.3934/jmd.2013.7.291 |
[6] |
Yves Derriennic. Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the "central limit theorem''. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 143-158. doi: 10.3934/dcds.2006.15.143 |
[7] |
Asaf Katz. On mixing and sparse ergodic theorems. Journal of Modern Dynamics, 2021, 17: 1-32. doi: 10.3934/jmd.2021001 |
[8] |
Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional Brjuno frequency. Communications on Pure and Applied Analysis, 2021, 20 (2) : 467-494. doi: 10.3934/cpaa.2020222 |
[9] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395 |
[10] |
Linfei Wang, Dapeng Tao, Ruonan Wang, Ruxin Wang, Hao Li. Big Map R-CNN for object detection in large-scale remote sensing images. Mathematical Foundations of Computing, 2019, 2 (4) : 299-314. doi: 10.3934/mfc.2019019 |
[11] |
Boling Guo, Guoli Zhou. Finite dimensionality of global attractor for the solutions to 3D viscous primitive equations of large-scale moist atmosphere. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4305-4327. doi: 10.3934/dcdsb.2018160 |
[12] |
Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65 |
[13] |
Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581 |
[14] |
Aihua Fan, Lingmin Liao, Jacques Peyrière. Generic points in systems of specification and Banach valued Birkhoff ergodic average. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1103-1128. doi: 10.3934/dcds.2008.21.1103 |
[15] |
Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221 |
[16] |
Messoud Efendiev, Alain Miranville. Finite dimensional attractors for reaction-diffusion equations in $R^n$ with a strong nonlinearity. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 399-424. doi: 10.3934/dcds.1999.5.399 |
[17] |
Tanja Eisner, Jakub Konieczny. Automatic sequences as good weights for ergodic theorems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4087-4115. doi: 10.3934/dcds.2018178 |
[18] |
Cecilia González-Tokman, Anthony Quas. A concise proof of the multiplicative ergodic theorem on Banach spaces. Journal of Modern Dynamics, 2015, 9: 237-255. doi: 10.3934/jmd.2015.9.237 |
[19] |
Shrey Sanadhya. A shrinking target theorem for ergodic transformations of the unit interval. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022042 |
[20] |
Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure and Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]