• Previous Article
    Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains
  • CPAA Home
  • This Issue
  • Next Article
    Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency
December  2020, 19(12): 5337-5365. doi: 10.3934/cpaa.2020241

Approximations of stochastic 3D tamed Navier-Stokes equations

1. 

MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Hunan, 410081, China

2. 

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, China

* Corresponding author

Received  January 2020 Revised  July 2020 Published  September 2020

Fund Project: This work was supported by NSFC (No. 11801032, 11971227, 11501195, 11871476). Hunan Provincial Natural Science Foundation of China (No. 2019JJ50377). Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, CAS (No. 2008DP173182). Beijing Institute of Technology Research Fund Program for Young Scholars. The Construct Program of the Key Discipline in Hunan Province

In this paper, we are concerned with 3D tamed Navier-Stokes equations with periodic boundary conditions, which can be viewed as an approximation of the classical 3D Navier-Stokes equations. We show that the strong solution of 3D tamed Navier-Stokes equations driven by Poisson random measure converges weakly to the strong solution of 3D tamed Navier-Stokes equations driven by Gaussian noise on the state space $ \mathcal{D}([0, T];\mathbb{H}^1) $.

Citation: Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241
References:
[1]

D. Aldous, Stopping times and tightness, Ann. Probab., 6 (1978), 335-340.  doi: 10.1214/aop/1176995579.  Google Scholar

[2]

P. Billingsley, Convergence of Probability Measure, 2$^{nd}$ edition, John Wiley & Sons, Inc., New York, 1999. doi: 10.1002/9780470316962.  Google Scholar

[3]

Z. Brzeźniak and G. Dhariwal, Stochastic Tamed Navier-Stokes Equations on $\mathbb{R}^3$: The Existence and the Uniqueness of Solutions and the Existence of an Invariant Measure, J. Math. Fluid Mech., 22 (2020), 54 pp. doi: 10.1007/s00021-020-0480-z.  Google Scholar

[4]

Z. BrzeźniakE. Hausenblas and J. Zhu, 2D Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79 (2013), 122-139.  doi: 10.1016/j.na.2012.10.011.  Google Scholar

[5]

A. Bensoussan and R. Temam, Équations stochastiques du type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222.  doi: 10.1016/0022-1236(73)90045-1.  Google Scholar

[6]

A. BudhirajaP. Dupuis and V. Maroulas, Variational representations for continuous time processes, Ann. Inst. Henri Poincaré Probab. Stat., 47 (2011), 725-747.  doi: 10.1214/10-AIHP382.  Google Scholar

[7]

Z. BrzézniakW. Liu and J. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014), 283-310.  doi: 10.1016/j.nonrwa.2013.12.005.  Google Scholar

[8]

G. Di Nunno and T. Zhang, Approximations of stochastic partial differential equations, Ann. Appl. Probab., 26 (2016), 1443-1466.  doi: 10.1214/15-AAP1122.  Google Scholar

[9]

Z. DongJ. XiongJ. Zhai and T. Zhang, A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises, J. Funct. Anal., 272 (2017), 227-254.  doi: 10.1016/j.jfa.2016.10.012.  Google Scholar

[10]

Z. Dong and R. Zhang, 3D tamed Navier-Stokes equations driven by multiplicative Lévy noise: Existence, uniqueness and large deviations, J. Math. Anal. Appl., 492 (2020), 124404. doi: 10.1016/j.jmaa.2020.124404.  Google Scholar

[11]

R. Durrett, Probability: Theory and Examples, 4$^{nd}$ edition, Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9780511779398.  Google Scholar

[12]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.  doi: 10.1007/BF01192467.  Google Scholar

[13]

A. Ichikawa, Some inequalities for martingales and stochastic convolutions, Stoch. Anal. Appl., 4 (1986), 329-339. doi: 10.1080/07362998608809094.  Google Scholar

[14]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2$^{nd}$ edition, North-Holland Mathematical Library, 1989.  Google Scholar

[15]

O. Kallenberg, Foundations of Modern Probability, 2$^{nd}$ edition, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-4015-8.  Google Scholar

[16]

P. L. Lions, Mathematical Topics in Fluid Mechanics, Clarendon Press, Oxford, 1996.  Google Scholar

[17]

R. Mikulevicius and B. L. Rozovskii, Global $L^2$ solution of stochastic Navier-Stokes equations, Ann. Probab., 33 (2005), 137-176.  doi: 10.1214/009117904000000630.  Google Scholar

[18]

M. T. MohanK. Sakthivel and S. S. Sritharan, Ergodicity for the 3D stochastic Navier-Stokes equations perturbed by Lévy noise, Math. Nachr., 292 (2019), 1056-1088.  doi: 10.1002/mana.201700339.  Google Scholar

[19]

M. Röckner and T. Zhang, Stochastic 3D tamed Navier-Stokes equations: existence, uniqueness and small time large deviation principles, J. Differ. Equ., 252 (2012), 716-744.  doi: 10.1016/j.jde.2011.09.030.  Google Scholar

[20]

M. RöcknerT. Zhang and X. Zhang, Large deviations for stochastic tamed 3D Navier-Stokes equations, Appl. Math. Optim., 61 (2010), 267-285.  doi: 10.1007/s00245-009-9089-6.  Google Scholar

[21]

M. Röckner and X. Zhang, Tamed 3D Navier-Stokes equation: existence, uniqueness and regularity, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12 (2009), 525-549.  doi: 10.1142/S0219025709003859.  Google Scholar

[22]

M. Röckner and X. Zhang, Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness and ergodicity, Probab. Theory Related Fields, 145 (2009), 211-267.  doi: 10.1007/s00440-008-0167-5.  Google Scholar

[23]

B. L. Rozovskii, Stochastic Evolution Systems, Kluwer Academic, Dordrecht, 1990. doi: 10.1007/978-94-011-3830-7.  Google Scholar

[24]

B. Schmalfuss, Qualitative properties for the stochastic Navier-Stokes equation, Nonlinear Anal., 28 (1997), 1545-1563.  doi: 10.1016/S0362-546X(96)00015-6.  Google Scholar

[25]

S. Shang and T. Zhang, Approximations of stochastic Navier-Stokes equations, Stochastic Process. Appl., 130 (2020), 2407-2432.  doi: 10.1016/j.spa.2019.07.007.  Google Scholar

[26]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. doi: https://doi.org/10.1115/1.3424338.  Google Scholar

[27]

X. Zhang, A tamed 3D Navier-Stokes equation in uniform $C^2-$domains, Nonlinear Anal., 71 (2009), 3093-3112.  doi: 10.1016/j.na.2009.01.221.  Google Scholar

show all references

References:
[1]

D. Aldous, Stopping times and tightness, Ann. Probab., 6 (1978), 335-340.  doi: 10.1214/aop/1176995579.  Google Scholar

[2]

P. Billingsley, Convergence of Probability Measure, 2$^{nd}$ edition, John Wiley & Sons, Inc., New York, 1999. doi: 10.1002/9780470316962.  Google Scholar

[3]

Z. Brzeźniak and G. Dhariwal, Stochastic Tamed Navier-Stokes Equations on $\mathbb{R}^3$: The Existence and the Uniqueness of Solutions and the Existence of an Invariant Measure, J. Math. Fluid Mech., 22 (2020), 54 pp. doi: 10.1007/s00021-020-0480-z.  Google Scholar

[4]

Z. BrzeźniakE. Hausenblas and J. Zhu, 2D Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79 (2013), 122-139.  doi: 10.1016/j.na.2012.10.011.  Google Scholar

[5]

A. Bensoussan and R. Temam, Équations stochastiques du type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222.  doi: 10.1016/0022-1236(73)90045-1.  Google Scholar

[6]

A. BudhirajaP. Dupuis and V. Maroulas, Variational representations for continuous time processes, Ann. Inst. Henri Poincaré Probab. Stat., 47 (2011), 725-747.  doi: 10.1214/10-AIHP382.  Google Scholar

[7]

Z. BrzézniakW. Liu and J. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014), 283-310.  doi: 10.1016/j.nonrwa.2013.12.005.  Google Scholar

[8]

G. Di Nunno and T. Zhang, Approximations of stochastic partial differential equations, Ann. Appl. Probab., 26 (2016), 1443-1466.  doi: 10.1214/15-AAP1122.  Google Scholar

[9]

Z. DongJ. XiongJ. Zhai and T. Zhang, A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises, J. Funct. Anal., 272 (2017), 227-254.  doi: 10.1016/j.jfa.2016.10.012.  Google Scholar

[10]

Z. Dong and R. Zhang, 3D tamed Navier-Stokes equations driven by multiplicative Lévy noise: Existence, uniqueness and large deviations, J. Math. Anal. Appl., 492 (2020), 124404. doi: 10.1016/j.jmaa.2020.124404.  Google Scholar

[11]

R. Durrett, Probability: Theory and Examples, 4$^{nd}$ edition, Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9780511779398.  Google Scholar

[12]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.  doi: 10.1007/BF01192467.  Google Scholar

[13]

A. Ichikawa, Some inequalities for martingales and stochastic convolutions, Stoch. Anal. Appl., 4 (1986), 329-339. doi: 10.1080/07362998608809094.  Google Scholar

[14]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2$^{nd}$ edition, North-Holland Mathematical Library, 1989.  Google Scholar

[15]

O. Kallenberg, Foundations of Modern Probability, 2$^{nd}$ edition, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-4015-8.  Google Scholar

[16]

P. L. Lions, Mathematical Topics in Fluid Mechanics, Clarendon Press, Oxford, 1996.  Google Scholar

[17]

R. Mikulevicius and B. L. Rozovskii, Global $L^2$ solution of stochastic Navier-Stokes equations, Ann. Probab., 33 (2005), 137-176.  doi: 10.1214/009117904000000630.  Google Scholar

[18]

M. T. MohanK. Sakthivel and S. S. Sritharan, Ergodicity for the 3D stochastic Navier-Stokes equations perturbed by Lévy noise, Math. Nachr., 292 (2019), 1056-1088.  doi: 10.1002/mana.201700339.  Google Scholar

[19]

M. Röckner and T. Zhang, Stochastic 3D tamed Navier-Stokes equations: existence, uniqueness and small time large deviation principles, J. Differ. Equ., 252 (2012), 716-744.  doi: 10.1016/j.jde.2011.09.030.  Google Scholar

[20]

M. RöcknerT. Zhang and X. Zhang, Large deviations for stochastic tamed 3D Navier-Stokes equations, Appl. Math. Optim., 61 (2010), 267-285.  doi: 10.1007/s00245-009-9089-6.  Google Scholar

[21]

M. Röckner and X. Zhang, Tamed 3D Navier-Stokes equation: existence, uniqueness and regularity, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12 (2009), 525-549.  doi: 10.1142/S0219025709003859.  Google Scholar

[22]

M. Röckner and X. Zhang, Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness and ergodicity, Probab. Theory Related Fields, 145 (2009), 211-267.  doi: 10.1007/s00440-008-0167-5.  Google Scholar

[23]

B. L. Rozovskii, Stochastic Evolution Systems, Kluwer Academic, Dordrecht, 1990. doi: 10.1007/978-94-011-3830-7.  Google Scholar

[24]

B. Schmalfuss, Qualitative properties for the stochastic Navier-Stokes equation, Nonlinear Anal., 28 (1997), 1545-1563.  doi: 10.1016/S0362-546X(96)00015-6.  Google Scholar

[25]

S. Shang and T. Zhang, Approximations of stochastic Navier-Stokes equations, Stochastic Process. Appl., 130 (2020), 2407-2432.  doi: 10.1016/j.spa.2019.07.007.  Google Scholar

[26]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. doi: https://doi.org/10.1115/1.3424338.  Google Scholar

[27]

X. Zhang, A tamed 3D Navier-Stokes equation in uniform $C^2-$domains, Nonlinear Anal., 71 (2009), 3093-3112.  doi: 10.1016/j.na.2009.01.221.  Google Scholar

[1]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[2]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[3]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[6]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[7]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[8]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[9]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[10]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[11]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[12]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[13]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[14]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[15]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[16]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[17]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[18]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[19]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[20]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (72)
  • HTML views (94)
  • Cited by (0)

Other articles
by authors

[Back to Top]