This article is concerned with the limiting behavior of dynamics of a class of non-autonomous stochastic partial differential equations driven by colored noise on unbounded thin domains. We first prove the existence of tempered pullback random attractors for the equations defined on $ (n+1) $-dimensional unbounded thin domains. Then, we show the upper semicontinuity of these attractors when the $ (n+1) $-dimensional unbounded thin domains collapse onto the $ n $-dimensional space $ \mathbb{R}^n $. Here, the tail estimates are utilized to deal with the non-compactness of Sobolev embeddings on unbounded domains.
Citation: |
[1] |
L. Arnold, Random Dynamical Systems, Springer, New York, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
[2] |
P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869.
doi: 10.1016/j.jde.2008.05.017.![]() ![]() ![]() |
[3] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705.![]() ![]() ![]() |
[4] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307-341.
doi: 10.1007/BF02219225.![]() ![]() ![]() |
[5] |
F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes eqution with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.
doi: 10.1080/17442509608834083.![]() ![]() ![]() |
[6] |
A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. B, 23 (2018), 1689-1720.
doi: 10.3934/dcdsb.2018072.![]() ![]() ![]() |
[7] |
J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95.
![]() ![]() |
[8] |
K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Differ. Equ., 31 (2019), 1341-1371.
doi: 10.1007/s10884-017-9626-y.![]() ![]() ![]() |
[9] |
K. Lu and Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differ. Equ., 251 (2011), 2853-2895.
doi: 10.1016/j.jde.2011.05.032.![]() ![]() ![]() |
[10] |
D. Li, B. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction diffusion equations on thin domains, J. Differ. Equ., 262 (2017), 1575-1602.
doi: 10.1016/j.jde.2016.10.024.![]() ![]() ![]() |
[11] |
D. Li, K. Lu, B. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.
doi: 10.3934/dcds.2018009.![]() ![]() ![]() |
[12] |
D. Ruelle, Characteristic exponents for a viscous fluid sujectied to time dependent forces, Commun. Math. Phys., 93 (1884), 285-300.
![]() ![]() |
[13] |
B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Dresden, (1992), 185–192.
![]() |
[14] |
L. Shi, R. Wang, K. Lu and B. Wang, Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differ. Equ., 267 (2019), 4373-4409.
doi: 10.1016/j.jde.2019.05.002.![]() ![]() ![]() |
[15] |
L. Shi and X. Li, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on unbounded thin domains, J. Math. Phycs., 60 (2019), 082702.
doi: 10.1063/1.5093890.![]() ![]() ![]() |
[16] |
J. Shen, K. Lu and B. Wang, Convergence and center manifolds for differential equations driven by colored noise, Discrete Contin. Dynam. Systems, 39 (2019), 4797-4840.
doi: 10.3934/dcds.2019196.![]() ![]() ![]() |
[17] |
S. M. Ulam and J. von Neumann, Random egodic theorems, Bull. Amer. Math. Soc., 51 (1945), 660.
doi: 10.1090/S0002-9904-1958-10189-5.![]() ![]() ![]() |
[18] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015.![]() ![]() ![]() |
[19] |
X. Wang, K. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2018), 378-424.
doi: 10.1016/j.jde.2017.09.006.![]() ![]() ![]() |
[20] |
R. Wang, R. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.
doi: 10.3934/dcds.2019165.![]() ![]() ![]() |