    • Previous Article
Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry
• CPAA Home
• This Issue
• Next Article
Classification of solutions to a system of $n^{\rm th}$ order equations on $\mathbb R^n$
December  2020, 19(12): 5437-5473. doi: 10.3934/cpaa.2020247

## Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation

 Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

Received  January 2020 Revised  July 2020 Published  December 2020 Early access  October 2020

Fund Project: The author is supported by NRF-2018R1D1A1A09083345

We consider the low regularity behavior of the fourth order cubic nonlinear Schrödinger equation (4NLS)
 \begin{align*} \begin{cases} i\partial_tu+\partial_x^4u = \pm \vert u \vert^2u, \quad(t,x)\in \mathbb{R}\times \mathbb{R}\\ u(x,0) = u_0(x)\in H^s\left(\mathbb{R}\right). \end{cases} \end{align*}
In , the author showed that this equation is globally well-posed in
 $H^s(\mathbb{R}), s\\\geq -\frac{1}{2}$
and mildly ill-posed in the sense that the solution map fails to be locally uniformly continuous for
 $-\frac{15}{14} . Therefore, $ s = -\frac{1}{2} $is the lowest regularity that can be handled by the contraction argument. In spite of this mild ill-posedness result, we obtain an a priori bound below $ s<-1/2 $. This an a priori estimate guarantees the existence of a weak solution for $ -3/4
. Our method is inspired by Koch-Tataru . We use the
 $U^p$
and
 $V^p$
based spaces adapted to frequency dependent time intervals on which the nonlinear evolution can still be described by linear dynamics.
Citation: Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247
##### References:
  M. Ben-Artzi, H. Koch and J. C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 87-92.  doi: 10.1016/S0764-4442(00)00120-8. Google Scholar  M. Christ, J. Colliander and T. Tao, A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order, J. Funct. Anal., 254 (2008), 368-395.  doi: 10.1016/j.jfa.2007.09.005. Google Scholar  M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Am. J. Math., 125 (2003), 1235-1293.   Google Scholar  M. Christ, J. Holmer and D. Tataru, Low regularity a priori bounds for the modified Korteweg-de Vries equation, Lib. Math., 32 (2012), 51-75.  doi: 10.14510/lm-ns.v32i1.32. Google Scholar  J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669.  doi: 10.1137/S0036141001384387. Google Scholar  J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, arXiv: math/0203218. Google Scholar  J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\Bbb R$ and $\Bbb T$, arXiv: math/0110045. Google Scholar  B. Guo and B. Wang, The global Cauchy problem and scattering of solutions for nonlinear Schrödinger equations in $H^s$, Differ. Integral Equ., 15 (2002), 1073-1083.   Google Scholar  M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917-941.  doi: 10.1016/j.anihpc.2008.04.002. Google Scholar  S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(\Bbb T^3)$, Duke Math. J., 159 (2011), 329-349.   Google Scholar  S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the KP-I initial-value problem in the energy space, Invent. Math., 173 (2008), 265-304.  doi: 10.1007/s00222-008-0115-0. Google Scholar  V. I. Karpman, Lyapunov approach to the soliton stability in highly dispersive systems. I. Fourth order nonlinear Schrödinger equations, Phys. Lett. A, 215 (1996), 254-256.   Google Scholar  V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. D, 144 (2000), 194-210.   Google Scholar  C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69.  doi: 10.1512/iumj.1991.40.40003. Google Scholar  C. E. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J., 106 (2001), 617-633.  doi: 10.1215/S0012-7094-01-10638-8. Google Scholar  H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^s({\Bbb R})$, Int. Math. Res. Not., (2003), 1449–1464. Google Scholar  H. Koch and D. Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not., (2007), 1073–7928. doi: 10.1093/imrn/rnm053. Google Scholar  H. Koch and D. Tataru, Energy and local energy bounds for the 1-d cubic NLS equation in $H^{-\frac14}$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 955-988.   Google Scholar  H. Koch and D. Tataru, Conserved energies for the cubic nonlinear Schrödinger equation in one dimension, Duke Math. J., 167 (2018), 3207-3313. Google Scholar  H. Koch, D. Tataru and M. Vişan, Dispersive Equations and Nonlinear Waves, Oberwolfach Seminars, Birkhäuser/Springer, Basel, 2014. Google Scholar  C. Kwak, Periodic fourth-order cubic NLS: Local well-posedness and non-squeezing property, J. Math. Anal. Appl., 461 (2018), 1327-1364.   Google Scholar  B. Liu, A priori bounds for KdV equation below $H^{-\frac34}$, J. Funct. Anal., 268 (2015), 501-554.  doi: 10.1016/j.jfa.2014.06.020. Google Scholar  T. Oh, P. Sosoe and N. Tzvetkov, An optimal regularity result on the quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, J. Éc. polytech. Math., 5 (2018), 793–841. doi: 10.5802/jep.83. Google Scholar  T. Oh and N. Tzvetkov, Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, Probab. Theory Rel., 169 (2017), 1121-1168.  doi: 10.1007/s00440-016-0748-7. Google Scholar  T. Oh and Y. Wang, Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces, arXiv: 1707.02013. Google Scholar  B. Pausader, The cubic fourth-order Schrödinger equation, arXiv: 0807.4916. Google Scholar  Roberto A. Capistrano-Filho, Márcio Cavalcante, Fernando A. Gallego, Lower regularity solutions of the biharmonic Schrödinger equation in a quarter plane, arXiv: 1812.11079. Google Scholar  J. i. Segata, Modified wave operators for the fourth-order non-linear Schrödinger-type equation with cubic non-linearit, Math. Methods Appl. Sci., 29 (2006), 1785-1800.  doi: 10.1002/mma.751. Google Scholar  K. Seong, Well-Posedness and Ill-Posedness for the Fourth order cubic nonlinear Schrödinger equation in negative Sobolev spaces, arXiv: 1911.03253. Google Scholar  H. Takaoka and Y. Tsutsumi, Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition, Int. Math. Res. Not., 56 (2004), 3009-3040.   Google Scholar  Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125.   Google Scholar

show all references

##### References:
  M. Ben-Artzi, H. Koch and J. C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 87-92.  doi: 10.1016/S0764-4442(00)00120-8. Google Scholar  M. Christ, J. Colliander and T. Tao, A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order, J. Funct. Anal., 254 (2008), 368-395.  doi: 10.1016/j.jfa.2007.09.005. Google Scholar  M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Am. J. Math., 125 (2003), 1235-1293.   Google Scholar  M. Christ, J. Holmer and D. Tataru, Low regularity a priori bounds for the modified Korteweg-de Vries equation, Lib. Math., 32 (2012), 51-75.  doi: 10.14510/lm-ns.v32i1.32. Google Scholar  J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669.  doi: 10.1137/S0036141001384387. Google Scholar  J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, arXiv: math/0203218. Google Scholar  J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\Bbb R$ and $\Bbb T$, arXiv: math/0110045. Google Scholar  B. Guo and B. Wang, The global Cauchy problem and scattering of solutions for nonlinear Schrödinger equations in $H^s$, Differ. Integral Equ., 15 (2002), 1073-1083.   Google Scholar  M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917-941.  doi: 10.1016/j.anihpc.2008.04.002. Google Scholar  S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(\Bbb T^3)$, Duke Math. J., 159 (2011), 329-349.   Google Scholar  S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the KP-I initial-value problem in the energy space, Invent. Math., 173 (2008), 265-304.  doi: 10.1007/s00222-008-0115-0. Google Scholar  V. I. Karpman, Lyapunov approach to the soliton stability in highly dispersive systems. I. Fourth order nonlinear Schrödinger equations, Phys. Lett. A, 215 (1996), 254-256.   Google Scholar  V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. D, 144 (2000), 194-210.   Google Scholar  C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69.  doi: 10.1512/iumj.1991.40.40003. Google Scholar  C. E. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J., 106 (2001), 617-633.  doi: 10.1215/S0012-7094-01-10638-8. Google Scholar  H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^s({\Bbb R})$, Int. Math. Res. Not., (2003), 1449–1464. Google Scholar  H. Koch and D. Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not., (2007), 1073–7928. doi: 10.1093/imrn/rnm053. Google Scholar  H. Koch and D. Tataru, Energy and local energy bounds for the 1-d cubic NLS equation in $H^{-\frac14}$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 955-988.   Google Scholar  H. Koch and D. Tataru, Conserved energies for the cubic nonlinear Schrödinger equation in one dimension, Duke Math. J., 167 (2018), 3207-3313. Google Scholar  H. Koch, D. Tataru and M. Vişan, Dispersive Equations and Nonlinear Waves, Oberwolfach Seminars, Birkhäuser/Springer, Basel, 2014. Google Scholar  C. Kwak, Periodic fourth-order cubic NLS: Local well-posedness and non-squeezing property, J. Math. Anal. Appl., 461 (2018), 1327-1364.   Google Scholar  B. Liu, A priori bounds for KdV equation below $H^{-\frac34}$, J. Funct. Anal., 268 (2015), 501-554.  doi: 10.1016/j.jfa.2014.06.020. Google Scholar  T. Oh, P. Sosoe and N. Tzvetkov, An optimal regularity result on the quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, J. Éc. polytech. Math., 5 (2018), 793–841. doi: 10.5802/jep.83. Google Scholar  T. Oh and N. Tzvetkov, Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, Probab. Theory Rel., 169 (2017), 1121-1168.  doi: 10.1007/s00440-016-0748-7. Google Scholar  T. Oh and Y. Wang, Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces, arXiv: 1707.02013. Google Scholar  B. Pausader, The cubic fourth-order Schrödinger equation, arXiv: 0807.4916. Google Scholar  Roberto A. Capistrano-Filho, Márcio Cavalcante, Fernando A. Gallego, Lower regularity solutions of the biharmonic Schrödinger equation in a quarter plane, arXiv: 1812.11079. Google Scholar  J. i. Segata, Modified wave operators for the fourth-order non-linear Schrödinger-type equation with cubic non-linearit, Math. Methods Appl. Sci., 29 (2006), 1785-1800.  doi: 10.1002/mma.751. Google Scholar  K. Seong, Well-Posedness and Ill-Posedness for the Fourth order cubic nonlinear Schrödinger equation in negative Sobolev spaces, arXiv: 1911.03253. Google Scholar  H. Takaoka and Y. Tsutsumi, Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition, Int. Math. Res. Not., 56 (2004), 3009-3040.   Google Scholar  Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125.   Google Scholar
  Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109  Nikolay Dimitrov, Stepan Tersian. Existence of homoclinic solutions for a nonlinear fourth order $p$-Laplacian difference equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 555-567. doi: 10.3934/dcdsb.2019254  Pierre-Étienne Druet. Higher $L^p$ regularity for vector fields that satisfy divergence and rotation constraints in dual Sobolev spaces, and application to some low-frequency Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 475-496. doi: 10.3934/dcdss.2015.8.475  Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831  Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3083-3097. doi: 10.3934/dcdss.2020113  Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261  Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021156  Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027  Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284  Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843  Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174  Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093  Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021205  Kelin Li, Huafei Di. On the well-posedness and stability for the fourth-order Schrödinger equation with nonlinear derivative term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4293-4320. doi: 10.3934/dcdss.2021122  Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579  François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229  Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037  Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177  Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93  Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

2020 Impact Factor: 1.916