December  2020, 19(12): 5509-5566. doi: 10.3934/cpaa.2020250

A truncated real interpolation method and characterizations of screened Sobolev spaces

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA

* Corresponding author

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: I. Tice was supported by an NSF CAREER Grant (DMS #1653161). N. Stevenson was supported by the summer research support provided by this grant

In this paper we prove structural and topological characterizations of the screened Sobolev spaces with screening functions bounded below and above by positive constants. We generalize a method of interpolation to the case of seminormed spaces. This method, which we call the truncated method, generates the screened Sobolev subfamily and a more general screened Besov scale. We then prove that the screened Besov spaces are equivalent to the sum of a Lebesgue space and a homogeneous Sobolev space and provide a Littlewood-Paley frequency space characterization.

Citation: Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250
References:
[1] R. A. Adams and John J. F. Fournier, Pure and Applied Mathematics, Elsevier/Academic Press, Amsterdam, second edition, 2003.   Google Scholar
[2]

Sergey V. AstashkinKonstantin V. Lykov and Mario Milman, Limiting interpolation spaces via extrapolation, J. Approx. Theory, 240 (2019), 16-70.  doi: 10.1016/j.jat.2018.09.007.  Google Scholar

[3] Jean BourgainH. Brezis and Petru Mironescu, Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001.   Google Scholar
[4]

J. BourgainH. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s, p}$ when $s\uparrow1$ and applications, J. Anal. Math., 87 (2002), 77-101.  doi: 10.1007/BF02868470.  Google Scholar

[5]

Hajer Bahouri, Jean-Yves Chemin and Raphaël Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[6]

V. Benci and D. Fortunato, Weighted Sobolev spaces and the nonlinear Dirichlet problem in unbounded domains, Ann. Mat. Pura Appl., 121 (1979), 319-336.  doi: 10.1007/BF02412010.  Google Scholar

[7] Oleg V. BesovValentin P. Il'in and Sergey M. Nikol'skiǐ, Integral Representations of Functions and Imbedding Theorems, V. H. Winston & Sons, Washington, D. C., Halsted Press, New York-Toronto, Ont. London, 1978.   Google Scholar
[8] Oleg V. BesovValentin P. Il'in and Sergey M. Nikol'skiǐ, Integral Representations of Functions and Imbedding Theorems, V. H. Winston & Sons, Washington, D. C., Halsted Press, New York-Toronto, Ont. London, 1979.   Google Scholar
[9]

Jöran Bergh and Jörgen Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[10]

H. Brezis and Hoai-Minh Nguyen, Non-local functionals related to the total variation and connections with image processing, Ann. PDE, 4 (2018), 77pp. doi: 10.1007/s40818-018-0044-1.  Google Scholar

[11]

Melvyn S. Berger and Martin Schechter, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains, Trans. Am. Math. Soc., 172 (1972), 261-278.  doi: 10.2307/1996347.  Google Scholar

[12]

Victor I. Burenkov, Sobolev Spaces on Domains, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1998. doi: 10.1007/978-3-663-11374-4.  Google Scholar

[13]

Fernando CobosLuz M. Fernández-CabreraThomas Kühn and Tino Ullrich, On an extreme class of real interpolation spaces, J. Funct. Anal., 256 (2009), 2321-2366.  doi: 10.1016/j.jfa.2008.12.013.  Google Scholar

[14]

Qiang DuMax GunzburgerR. B. Lehoucq and Kun Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696.  doi: 10.1137/110833294.  Google Scholar

[15]

Eleonora DiNezzaGiampiero Palatucci and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

D. E. Edmunds and W. D. Evans, Elliptic and degenerate-elliptic operators in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1973), 591-640.   Google Scholar

[17]

Matthieu FelsingerMoritz Kassmann and Paul Voigt, The Dirichlet problem for nonlocal operators, Math. Z., 279 (2015), 779-809.  doi: 10.1007/s00209-014-1394-3.  Google Scholar

[18]

Patrick T. Flynn and Huy Q. Nguyen, The vanishing surface tension limit of the Muskat problem, arXiv: 2001.10473. Google Scholar

[19]

M. E. Gomez and M. Milman, Extrapolation spaces and almost-everywhere convergence of singular integrals, J. London Math. Soc., 34 (1986), 305-316.  doi: 10.1112/jlms/s2-34.2.305.  Google Scholar

[20]

Loukas Grafakos, Classical Fourier Analysis, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[21]

Loukas Grafakos, Modern Fourier Analysis, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1230-8.  Google Scholar

[22]

Pierre Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611972030.ch1.  Google Scholar

[23]

Jan Gustavsson, Interpolation of semi-norms, Technical report, Lund University, 1970. Google Scholar

[24]

Piotr Hajł asz and Agnieszka Kał amajska, Polynomial asymptotics and approximation of Sobolev functions, Studia Math., 113 (1995), 55-64.   Google Scholar

[25]

R. Hanks, Interpolation by the real method between BMO, $L^{\alpha }(0 < \alpha < \infty)$ and $H^{\alpha }(0 < \alpha < \infty)$, Indiana Univ. Math. J., 26 (1977), 679-689.  doi: 10.1512/iumj.1977.26.26054.  Google Scholar

[26]

Björn Jawerth and Mario Milman, Extrapolation theory with applications, Mem. Am. Math. Soc., 89 (1991), 82pp. doi: 10.1090/memo/0440.  Google Scholar

[27]

Alois Kufner, Weighted Sobolev Spaces, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985.  Google Scholar

[28]

Giovanni Leoni, A first course in Sobolev spaces, American Mathematical Society, Providence, RI, second edition, 2017.  Google Scholar

[29]

Giovanni Leoni and Ian Tice, Traces for homogeneous sobolev spaces in infinite strip-like domains, J. Funct. Anal., 277 (2019), 2288-2380.  doi: 10.1016/j.jfa.2019.01.005.  Google Scholar

[30]

Alessandra Lunardi, Interpolation Theory, Edizioni della Normale, Pisa, 2018. doi: 10.1007/978-88-7642-638-4.  Google Scholar

[31]

Vladimir Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Heidelberg, augmented edition, 2011. doi: 10.1007/978-3-642-15564-2.  Google Scholar

[32]

V. Maz'yaM. Mitrea and T. Shaposhnikova, The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, J. Anal. Math., 110 (2010), 167-239.  doi: 10.1007/s11854-010-0005-4.  Google Scholar

[33]

Jindřich Nečas, Direct Methods in the Theory of Elliptic Equations, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-10455-8.  Google Scholar

[34]

Huy Q. Nguyen, On well-posedness of the Muskat problem with surface tension, arXiv: 1907.11552. Google Scholar

[35]

Huy Q. Nguyen and Benoît Pausader, A paradifferential approach for well-posedness of the muskat problem, Arch. Ration. Mech. Anal., 237 (2020) 25–100. doi: 10.1007/s00205-020-01494-7.  Google Scholar

[36]

J. Peetre, A Theory of Interpolation of Normed Spaces, Notas de Matemática, No. 39. Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.  Google Scholar

[37]

Jaak Peetre, New thoughts on Besov Spaces, Mathematics Department, Duke University, Durham, N. C., 1976.  Google Scholar

[38]

Augusto C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differ. Equ., 19 (2004), 229-255.  doi: 10.1007/s00526-003-0195-z.  Google Scholar

[39]

Augusto C. Ponce and Daniel Spector, On formulae decoupling the total variation of BV functions, Nonlinear Anal., 154 (2017), 241-257.  doi: 10.1016/j.na.2016.08.028.  Google Scholar

[40] Elias M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.   Google Scholar
[41]

Robert S. Strichartz, "Graph paper" trace characterizations of functions of finite energy, J. Anal. Math., 128 (2016), 239-260.  doi: 10.1007/s11854-016-0008-x.  Google Scholar

[42]

Gudrun Thater, Neumann problem in domains with outlets of bounded diameter, Acta Appl. Math., 73 (2002), 251-274.  doi: 10.1023/A:1019736224759.  Google Scholar

[43]

Angus Ellis Taylor and David C. Lay, Introduction to Functional Analysis, John Wiley & Sons, New York-Chichester-Brisbane, second edition, 1980.  Google Scholar

[44]

Hans Triebel, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[45]

Hans Triebel, Theory of Function Spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2010.  Google Scholar

[46]

Kosaku Yosida, Functional Analysis, Springer-Verlag, Berlin, 1995. doi: 10.1007/978-3-642-61859-8.  Google Scholar

[47]

Kun Zhou and Qiang Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Numer. Anal., 48 (2010), 1759-1780.  doi: 10.1137/090781267.  Google Scholar

show all references

References:
[1] R. A. Adams and John J. F. Fournier, Pure and Applied Mathematics, Elsevier/Academic Press, Amsterdam, second edition, 2003.   Google Scholar
[2]

Sergey V. AstashkinKonstantin V. Lykov and Mario Milman, Limiting interpolation spaces via extrapolation, J. Approx. Theory, 240 (2019), 16-70.  doi: 10.1016/j.jat.2018.09.007.  Google Scholar

[3] Jean BourgainH. Brezis and Petru Mironescu, Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001.   Google Scholar
[4]

J. BourgainH. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s, p}$ when $s\uparrow1$ and applications, J. Anal. Math., 87 (2002), 77-101.  doi: 10.1007/BF02868470.  Google Scholar

[5]

Hajer Bahouri, Jean-Yves Chemin and Raphaël Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[6]

V. Benci and D. Fortunato, Weighted Sobolev spaces and the nonlinear Dirichlet problem in unbounded domains, Ann. Mat. Pura Appl., 121 (1979), 319-336.  doi: 10.1007/BF02412010.  Google Scholar

[7] Oleg V. BesovValentin P. Il'in and Sergey M. Nikol'skiǐ, Integral Representations of Functions and Imbedding Theorems, V. H. Winston & Sons, Washington, D. C., Halsted Press, New York-Toronto, Ont. London, 1978.   Google Scholar
[8] Oleg V. BesovValentin P. Il'in and Sergey M. Nikol'skiǐ, Integral Representations of Functions and Imbedding Theorems, V. H. Winston & Sons, Washington, D. C., Halsted Press, New York-Toronto, Ont. London, 1979.   Google Scholar
[9]

Jöran Bergh and Jörgen Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[10]

H. Brezis and Hoai-Minh Nguyen, Non-local functionals related to the total variation and connections with image processing, Ann. PDE, 4 (2018), 77pp. doi: 10.1007/s40818-018-0044-1.  Google Scholar

[11]

Melvyn S. Berger and Martin Schechter, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains, Trans. Am. Math. Soc., 172 (1972), 261-278.  doi: 10.2307/1996347.  Google Scholar

[12]

Victor I. Burenkov, Sobolev Spaces on Domains, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1998. doi: 10.1007/978-3-663-11374-4.  Google Scholar

[13]

Fernando CobosLuz M. Fernández-CabreraThomas Kühn and Tino Ullrich, On an extreme class of real interpolation spaces, J. Funct. Anal., 256 (2009), 2321-2366.  doi: 10.1016/j.jfa.2008.12.013.  Google Scholar

[14]

Qiang DuMax GunzburgerR. B. Lehoucq and Kun Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696.  doi: 10.1137/110833294.  Google Scholar

[15]

Eleonora DiNezzaGiampiero Palatucci and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

D. E. Edmunds and W. D. Evans, Elliptic and degenerate-elliptic operators in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1973), 591-640.   Google Scholar

[17]

Matthieu FelsingerMoritz Kassmann and Paul Voigt, The Dirichlet problem for nonlocal operators, Math. Z., 279 (2015), 779-809.  doi: 10.1007/s00209-014-1394-3.  Google Scholar

[18]

Patrick T. Flynn and Huy Q. Nguyen, The vanishing surface tension limit of the Muskat problem, arXiv: 2001.10473. Google Scholar

[19]

M. E. Gomez and M. Milman, Extrapolation spaces and almost-everywhere convergence of singular integrals, J. London Math. Soc., 34 (1986), 305-316.  doi: 10.1112/jlms/s2-34.2.305.  Google Scholar

[20]

Loukas Grafakos, Classical Fourier Analysis, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[21]

Loukas Grafakos, Modern Fourier Analysis, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1230-8.  Google Scholar

[22]

Pierre Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611972030.ch1.  Google Scholar

[23]

Jan Gustavsson, Interpolation of semi-norms, Technical report, Lund University, 1970. Google Scholar

[24]

Piotr Hajł asz and Agnieszka Kał amajska, Polynomial asymptotics and approximation of Sobolev functions, Studia Math., 113 (1995), 55-64.   Google Scholar

[25]

R. Hanks, Interpolation by the real method between BMO, $L^{\alpha }(0 < \alpha < \infty)$ and $H^{\alpha }(0 < \alpha < \infty)$, Indiana Univ. Math. J., 26 (1977), 679-689.  doi: 10.1512/iumj.1977.26.26054.  Google Scholar

[26]

Björn Jawerth and Mario Milman, Extrapolation theory with applications, Mem. Am. Math. Soc., 89 (1991), 82pp. doi: 10.1090/memo/0440.  Google Scholar

[27]

Alois Kufner, Weighted Sobolev Spaces, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985.  Google Scholar

[28]

Giovanni Leoni, A first course in Sobolev spaces, American Mathematical Society, Providence, RI, second edition, 2017.  Google Scholar

[29]

Giovanni Leoni and Ian Tice, Traces for homogeneous sobolev spaces in infinite strip-like domains, J. Funct. Anal., 277 (2019), 2288-2380.  doi: 10.1016/j.jfa.2019.01.005.  Google Scholar

[30]

Alessandra Lunardi, Interpolation Theory, Edizioni della Normale, Pisa, 2018. doi: 10.1007/978-88-7642-638-4.  Google Scholar

[31]

Vladimir Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Heidelberg, augmented edition, 2011. doi: 10.1007/978-3-642-15564-2.  Google Scholar

[32]

V. Maz'yaM. Mitrea and T. Shaposhnikova, The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, J. Anal. Math., 110 (2010), 167-239.  doi: 10.1007/s11854-010-0005-4.  Google Scholar

[33]

Jindřich Nečas, Direct Methods in the Theory of Elliptic Equations, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-10455-8.  Google Scholar

[34]

Huy Q. Nguyen, On well-posedness of the Muskat problem with surface tension, arXiv: 1907.11552. Google Scholar

[35]

Huy Q. Nguyen and Benoît Pausader, A paradifferential approach for well-posedness of the muskat problem, Arch. Ration. Mech. Anal., 237 (2020) 25–100. doi: 10.1007/s00205-020-01494-7.  Google Scholar

[36]

J. Peetre, A Theory of Interpolation of Normed Spaces, Notas de Matemática, No. 39. Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.  Google Scholar

[37]

Jaak Peetre, New thoughts on Besov Spaces, Mathematics Department, Duke University, Durham, N. C., 1976.  Google Scholar

[38]

Augusto C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differ. Equ., 19 (2004), 229-255.  doi: 10.1007/s00526-003-0195-z.  Google Scholar

[39]

Augusto C. Ponce and Daniel Spector, On formulae decoupling the total variation of BV functions, Nonlinear Anal., 154 (2017), 241-257.  doi: 10.1016/j.na.2016.08.028.  Google Scholar

[40] Elias M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.   Google Scholar
[41]

Robert S. Strichartz, "Graph paper" trace characterizations of functions of finite energy, J. Anal. Math., 128 (2016), 239-260.  doi: 10.1007/s11854-016-0008-x.  Google Scholar

[42]

Gudrun Thater, Neumann problem in domains with outlets of bounded diameter, Acta Appl. Math., 73 (2002), 251-274.  doi: 10.1023/A:1019736224759.  Google Scholar

[43]

Angus Ellis Taylor and David C. Lay, Introduction to Functional Analysis, John Wiley & Sons, New York-Chichester-Brisbane, second edition, 1980.  Google Scholar

[44]

Hans Triebel, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[45]

Hans Triebel, Theory of Function Spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2010.  Google Scholar

[46]

Kosaku Yosida, Functional Analysis, Springer-Verlag, Berlin, 1995. doi: 10.1007/978-3-642-61859-8.  Google Scholar

[47]

Kun Zhou and Qiang Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Numer. Anal., 48 (2010), 1759-1780.  doi: 10.1137/090781267.  Google Scholar

[1]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3045-3062. doi: 10.3934/dcds.2020397

[2]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[3]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[4]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[5]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[6]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

[7]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022

[8]

Krzysztof A. Krakowski, Luís Machado, Fátima Silva Leite. A unifying approach for rolling symmetric spaces. Journal of Geometric Mechanics, 2021, 13 (1) : 145-166. doi: 10.3934/jgm.2020016

[9]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[10]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[11]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[12]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[13]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[14]

Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050

[15]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[16]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[17]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[18]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[19]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

[20]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (76)
  • HTML views (63)
  • Cited by (0)

Other articles
by authors

[Back to Top]