December  2020, 19(12): 5591-5608. doi: 10.3934/cpaa.2020253

Solutions of nonlocal problem with critical exponent

School of Mathematics and computer science, Wuhan Polytechnic University, Wuhan 430023, China

* Corresponding author

Received  May 2020 Revised  July 2020 Published  October 2020

Fund Project: The first author is supported by NSF grant 11701439

This paper deals with the system with linearly coupled of nonlocal problem with critical exponent,
$ \begin{equation*} \begin{cases} (-\Delta)^\alpha u+\lambda_1u = |u|^{2_\alpha^*-2}u+\beta v , \quad x\in \Omega , \\ (-\Delta)^\alpha v+\lambda_2v = |v|^{2_\alpha^*-2}v+\beta u , \,\quad x\in \Omega , \\ u = v = 0,\ \ \qquad \qquad \qquad \quad \quad \qquad \,x\in \partial\Omega. \end{cases} \end{equation*} $
Here
$ \Omega $
is a smooth bounded domain in
$ {\mathbb{R}}^N(N>4\alpha) $
,
$ 0<\alpha<1 $
,
$ \lambda_1,\lambda_2>-\lambda_1(\Omega) $
are constants,
$ \lambda_1(\Omega) $
is the first eigenvalue of fractional Laplacian with Dirichlet boundary,
$ 2_\alpha^* = \frac{2N}{N-2\alpha} $
is the Sobolev critical exponent and
$ \beta\in {\mathbb{R}} $
is a coupling parameter. By variational method, we prove that this system has a positive ground state solution for some
$ \beta>0 $
. Via a perturbation argument, by doing some delicate estimates for the nonlocal term, we overcome some difficulties and find a positive higher energy solution when
$ |\beta| $
is small. Moreover, the asymptotic behaviors of the positive ground state and higher energy solutions as
$ \beta\rightarrow 0 $
are analyzed.
Citation: Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253
References:
[1]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. London Math. Soc., 75 (2007), 67-82.  doi: 10.1112/jlms/jdl020.  Google Scholar

[2]

A. AmbrosettiE. Colorado and D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 30 (2007), 85-112.  doi: 10.1007/s00526-006-0079-0.  Google Scholar

[3]

D. Applebaum, Levy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[4]

T. BartschN. Dancer and Z.Q. Wang, A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equ., 37 (2010), 345-361.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[5]

C. Br$\ddot{a}$ndleE. ColoradoA. de Pablo and U. Sanches, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect A, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[6]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functions, Proc. Am. Math. Soc., 88 (1983), 486-490.  doi: 10.1007/978-3-642-55925-9_42.  Google Scholar

[7]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Pure Differ. Equ., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

X. Chang and Z.Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differ. Equ., 256 (2014), 2965-2992.  doi: 10.1016/j.jde.2014.01.027.  Google Scholar

[10]

Z. Chen and W. Zou, On linearly coupled Schrödinger systems, Proc. Am. Math. Soc., 142 (2014), 323-333.  doi: 10.1090/S0002-9939-2013-12000-9.  Google Scholar

[11]

J. D$\acute{a}$vilaM. De Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schr$\ddot{o}$dinger equation, J. Differ. Equ., 256 (2014), 858-892.  doi: 10.1016/j.jde.2013.10.006.  Google Scholar

[12]

A. Garroni and S. M$\ddot{u}$ller, $\Gamma$-limit of a phase-field model of dislocations, SIAM J. Math. Anal., 36 (2005), 1943-1964.  doi: 10.1137/s003614100343768x.  Google Scholar

[13]

Q. Guo and X. He, Least energy solutions for a weakly coupled fractional Schrödinger system, Nonlinear Anal., 132 (2016), 141-159.  doi: 10.1016/j.na.2015.11.005.  Google Scholar

[14]

X. HeM. Squassina and W. Zou, The Nehari manifold for fractional systems involving critical nonlinearities, Commun. Pure Appl. Anal., 15 (2016), 1285-1308.  doi: 10.3934/cpaa.2016.15.1285.  Google Scholar

[15]

C. Lin and S. Peng, Segregated vector solutions for linearly coupled nonlinear Schrödinger systems, Indiana Univ. Math. J., 63 (2014), 939-967.  doi: 10.1512/iumj.2014.63.5310.  Google Scholar

[16]

W. Long and S. Peng, Positive vector solutions for a schrödinger system with external source terms, Nonlinear Differ. Equ. Appl., 27 (2020), 36pp. doi: 10.1007/s00030-019-0608-0.  Google Scholar

[17]

W. Long and S. Peng, Segregated vector solutions for a class of Bose-Einstein systems, J. Differ. Equ., 257 (2014), 207-230.  doi: 10.1016/j.jde.2014.03.019.  Google Scholar

[18]

W. Long, Z. Tang and S. Yan, Many synchronized vector solutions for a Bose-Einstein system, preprint. Google Scholar

[19]

D. Lv and S. Peng, On the positive vector solutions for nonlinear fractional systems with linear coupling, Discrete contin. dyn. syst. Ser. A, 37 (2017), 3327-3352.  doi: 10.1515/ans-2015-5024.  Google Scholar

[20]

S PengW. Shuai and Q. Wang, Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent, J. Differ. Equ., 263 (2017), 709-731.  doi: 10.1016/j.jde.2017.02.053.  Google Scholar

[21]

J. Tan, The Br$\acute{e}$zis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differ. Equ., 42 (2011), 21-41.  doi: 10.1007/s00526-010-0378-3.  Google Scholar

[22]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, arXiv: 0901.3261.  Google Scholar

[23]

S. YanJ. Yang and X. Yu, Equations involving fractional Laplacian operator: compactness and application, J. Funct. Anal., 269 (2015), 47-79.  doi: 10.1016/j.jfa.2015.04.012.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. London Math. Soc., 75 (2007), 67-82.  doi: 10.1112/jlms/jdl020.  Google Scholar

[2]

A. AmbrosettiE. Colorado and D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 30 (2007), 85-112.  doi: 10.1007/s00526-006-0079-0.  Google Scholar

[3]

D. Applebaum, Levy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[4]

T. BartschN. Dancer and Z.Q. Wang, A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equ., 37 (2010), 345-361.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[5]

C. Br$\ddot{a}$ndleE. ColoradoA. de Pablo and U. Sanches, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect A, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[6]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functions, Proc. Am. Math. Soc., 88 (1983), 486-490.  doi: 10.1007/978-3-642-55925-9_42.  Google Scholar

[7]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Pure Differ. Equ., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

X. Chang and Z.Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differ. Equ., 256 (2014), 2965-2992.  doi: 10.1016/j.jde.2014.01.027.  Google Scholar

[10]

Z. Chen and W. Zou, On linearly coupled Schrödinger systems, Proc. Am. Math. Soc., 142 (2014), 323-333.  doi: 10.1090/S0002-9939-2013-12000-9.  Google Scholar

[11]

J. D$\acute{a}$vilaM. De Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schr$\ddot{o}$dinger equation, J. Differ. Equ., 256 (2014), 858-892.  doi: 10.1016/j.jde.2013.10.006.  Google Scholar

[12]

A. Garroni and S. M$\ddot{u}$ller, $\Gamma$-limit of a phase-field model of dislocations, SIAM J. Math. Anal., 36 (2005), 1943-1964.  doi: 10.1137/s003614100343768x.  Google Scholar

[13]

Q. Guo and X. He, Least energy solutions for a weakly coupled fractional Schrödinger system, Nonlinear Anal., 132 (2016), 141-159.  doi: 10.1016/j.na.2015.11.005.  Google Scholar

[14]

X. HeM. Squassina and W. Zou, The Nehari manifold for fractional systems involving critical nonlinearities, Commun. Pure Appl. Anal., 15 (2016), 1285-1308.  doi: 10.3934/cpaa.2016.15.1285.  Google Scholar

[15]

C. Lin and S. Peng, Segregated vector solutions for linearly coupled nonlinear Schrödinger systems, Indiana Univ. Math. J., 63 (2014), 939-967.  doi: 10.1512/iumj.2014.63.5310.  Google Scholar

[16]

W. Long and S. Peng, Positive vector solutions for a schrödinger system with external source terms, Nonlinear Differ. Equ. Appl., 27 (2020), 36pp. doi: 10.1007/s00030-019-0608-0.  Google Scholar

[17]

W. Long and S. Peng, Segregated vector solutions for a class of Bose-Einstein systems, J. Differ. Equ., 257 (2014), 207-230.  doi: 10.1016/j.jde.2014.03.019.  Google Scholar

[18]

W. Long, Z. Tang and S. Yan, Many synchronized vector solutions for a Bose-Einstein system, preprint. Google Scholar

[19]

D. Lv and S. Peng, On the positive vector solutions for nonlinear fractional systems with linear coupling, Discrete contin. dyn. syst. Ser. A, 37 (2017), 3327-3352.  doi: 10.1515/ans-2015-5024.  Google Scholar

[20]

S PengW. Shuai and Q. Wang, Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent, J. Differ. Equ., 263 (2017), 709-731.  doi: 10.1016/j.jde.2017.02.053.  Google Scholar

[21]

J. Tan, The Br$\acute{e}$zis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differ. Equ., 42 (2011), 21-41.  doi: 10.1007/s00526-010-0378-3.  Google Scholar

[22]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, arXiv: 0901.3261.  Google Scholar

[23]

S. YanJ. Yang and X. Yu, Equations involving fractional Laplacian operator: compactness and application, J. Funct. Anal., 269 (2015), 47-79.  doi: 10.1016/j.jfa.2015.04.012.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[3]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[4]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[5]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[6]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[8]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[9]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[10]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[11]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[12]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[13]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[14]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[15]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[16]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[17]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[18]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[19]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[20]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (75)
  • HTML views (57)
  • Cited by (0)

Other articles
by authors

[Back to Top]