January  2021, 20(1): 55-75. doi: 10.3934/cpaa.2020257

Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters

1. 

Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China

2. 

Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China

* Corresponding author

Received  March 2020 Revised  August 2020 Published  October 2020

Fund Project: This work was supported by National Nature Science Foundation of China (11931016 and 11771296)

In this paper, we concern with the problem of limit cycle bifurcation for a class of piecewise smooth cubic systems. Using the first order Melnikov function we prove that at least thirteen limit cycles can be bifurcated from periodic solutions surrounding the center.

Citation: Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257
References:
[1]

L. P. da CruzD. D. Novaes and J. Torregrosa, New lower bound for the Hilbert number in piecewise quadratic differential systems, J. Differ. Equ., 226 (2019), 4170-4203.  doi: 10.1016/j.jde.2018.09.032.  Google Scholar

[2]

J. Gin$\acute{e}$ and J. Llibre, Limit cycles of cubic polynomial vector fields via the averaging theory, Nonlinear Anal., 66 (2007), 1707-1721.  doi: 10.1016/j.na.2006.02.016.  Google Scholar

[3]

M. GrauF. Ma$\tilde{n}$osas and J. Villadelprat, A Chebyshew criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.  doi: 10.1090/S0002-9947-2010-05007-X.  Google Scholar

[4]

L. F. S. Gouveia and J. Torregrosa, 24 crossing limit cycles in only one nest for piecewise cubic systems, Appl. Math. Lett., 103 (2020), 6pp. doi: 10.1016/j.aml.2019.106189.  Google Scholar

[5]

M. HanG. Chen and C. Sun, On the number of limit cycles in near-Hamiltonian polynomial systems, Int. J. Bifur. Chaos, 17 (2007), 2033-2047.  doi: 10.1142/S0218127407018208.  Google Scholar

[6]

M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815.  doi: 10.11948/2015061.  Google Scholar

[7]

M. Han and Y. Xiong, Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters, Chaos Solitons Fractals, 68 (2014), 20-29.  doi: 10.1016/j.chaos.2014.07.005.  Google Scholar

[8]

S. Huan and X. Yang, On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst., 32 (2012), 2147-2164.  doi: 10.3934/dcds.2012.32.2147.  Google Scholar

[9]

S. Karlin and W. J. Studden, Tchebycheff systems: With Applications in Analysis and Statistics, Pure Appa. math., Interscience Publishers, New York, London, Sydney, 1966.  Google Scholar

[10]

F. Liang and M. Han, Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems, Chaos Solitons Fractals, 45 (2012), 454-464.  doi: 10.1016/j.chaos.2011.09.013.  Google Scholar

[11]

S. Li and T. Huang, Limit cycles for piecewise smooth perturbations of a cubic polynomial differential center, J. Differ. Equ., 2015 (2015), 1-17.   Google Scholar

[12]

X. Liu and M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Int. J. Bifur. Chaos, 5 (2010), 1379-1390.  doi: 10.1142/S021812741002654X.  Google Scholar

[13]

J. Llibre and J. Itikawa, Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers, J. Comput. Appl. Math., 277 (2015), 171-191.  doi: 10.1016/j.cam.2014.09.007.  Google Scholar

[14]

C. LiW. LiJ. Llibre and Z. Zhang, Linear estimation of the number of zeros of Abelian integrals for some cubic isochronous centers, J. Differ. Equ., 180 (2002), 307-333.  doi: 10.1006/jdeq.2001.4064.  Google Scholar

[15]

J. LlibreC. Mereu and D. D. Novaes, Averaging theory for discontinuous piecewise differential systems, J. Differ. Equ., 258 (2015), 4007-4032.  doi: 10.1016/j.jde.2015.01.022.  Google Scholar

[16]

J. LlibreD. D. Novaes and M. A. Teixeira, On the birth of limit cycles for non-smooth dynamical systems, Bull. Sci. Math., 139 (2015), 229-244.  doi: 10.1016/j.bulsci.2014.08.011.  Google Scholar

[17]

J. Llibre and G. $\acute{S}$wirszcz, On the limit cycles of polynomial vector fields, Dyn. Contin. Discrete Impuls. Ser. A. Math. Anal., 18 (2011), 203-314.   Google Scholar

[18]

S. Li and Y. Zhao, Limit cycles of perturbed cubic isochronous center via the second order averaging method, Int. J. Bifur. Chaos, 24 (2014), 8pp. doi: 10.1142/S0218127414500357.  Google Scholar

[19]

J. N. Mather, Stability of $C^{\infty}$ Mappings: I. The Division Theorem, Ann. Math., 87 (1968), 89-104.  doi: 10.2307/1970595.  Google Scholar

[20]

D. D. Novaes and J. Torregrose, On extended Chebyshev systems with positive accuracy, J. Math. Anal. Appl., 448 (2017), 171-186.  doi: 10.1016/j.jmaa.2016.10.076.  Google Scholar

[21]

J. Sanders, F. Verhulst and J. Murdock, Averaging methods in nonlinear dynamical systems, 2$^{nd}$ edition, Applied Mathematical Sciences, Springer New York, 2007.  Google Scholar

[22]

Y. Xiong, Limit cycle bifurcations by perturbing piecewise smooth Hamiltonian systems with multiple parameters, J. Math. Anal. Appl., 421 (2015), 260-275. doi: 10.1016/j.jmaa.2014.07.013.  Google Scholar

[23]

Y. Xiong, M. Han and V. G. Romanovski, The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles, Int. J. Bifur. Chaos, 27 (2017), 14pp. doi: 10.1142/S0218127417501267.  Google Scholar

show all references

References:
[1]

L. P. da CruzD. D. Novaes and J. Torregrosa, New lower bound for the Hilbert number in piecewise quadratic differential systems, J. Differ. Equ., 226 (2019), 4170-4203.  doi: 10.1016/j.jde.2018.09.032.  Google Scholar

[2]

J. Gin$\acute{e}$ and J. Llibre, Limit cycles of cubic polynomial vector fields via the averaging theory, Nonlinear Anal., 66 (2007), 1707-1721.  doi: 10.1016/j.na.2006.02.016.  Google Scholar

[3]

M. GrauF. Ma$\tilde{n}$osas and J. Villadelprat, A Chebyshew criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.  doi: 10.1090/S0002-9947-2010-05007-X.  Google Scholar

[4]

L. F. S. Gouveia and J. Torregrosa, 24 crossing limit cycles in only one nest for piecewise cubic systems, Appl. Math. Lett., 103 (2020), 6pp. doi: 10.1016/j.aml.2019.106189.  Google Scholar

[5]

M. HanG. Chen and C. Sun, On the number of limit cycles in near-Hamiltonian polynomial systems, Int. J. Bifur. Chaos, 17 (2007), 2033-2047.  doi: 10.1142/S0218127407018208.  Google Scholar

[6]

M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815.  doi: 10.11948/2015061.  Google Scholar

[7]

M. Han and Y. Xiong, Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters, Chaos Solitons Fractals, 68 (2014), 20-29.  doi: 10.1016/j.chaos.2014.07.005.  Google Scholar

[8]

S. Huan and X. Yang, On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst., 32 (2012), 2147-2164.  doi: 10.3934/dcds.2012.32.2147.  Google Scholar

[9]

S. Karlin and W. J. Studden, Tchebycheff systems: With Applications in Analysis and Statistics, Pure Appa. math., Interscience Publishers, New York, London, Sydney, 1966.  Google Scholar

[10]

F. Liang and M. Han, Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems, Chaos Solitons Fractals, 45 (2012), 454-464.  doi: 10.1016/j.chaos.2011.09.013.  Google Scholar

[11]

S. Li and T. Huang, Limit cycles for piecewise smooth perturbations of a cubic polynomial differential center, J. Differ. Equ., 2015 (2015), 1-17.   Google Scholar

[12]

X. Liu and M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Int. J. Bifur. Chaos, 5 (2010), 1379-1390.  doi: 10.1142/S021812741002654X.  Google Scholar

[13]

J. Llibre and J. Itikawa, Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers, J. Comput. Appl. Math., 277 (2015), 171-191.  doi: 10.1016/j.cam.2014.09.007.  Google Scholar

[14]

C. LiW. LiJ. Llibre and Z. Zhang, Linear estimation of the number of zeros of Abelian integrals for some cubic isochronous centers, J. Differ. Equ., 180 (2002), 307-333.  doi: 10.1006/jdeq.2001.4064.  Google Scholar

[15]

J. LlibreC. Mereu and D. D. Novaes, Averaging theory for discontinuous piecewise differential systems, J. Differ. Equ., 258 (2015), 4007-4032.  doi: 10.1016/j.jde.2015.01.022.  Google Scholar

[16]

J. LlibreD. D. Novaes and M. A. Teixeira, On the birth of limit cycles for non-smooth dynamical systems, Bull. Sci. Math., 139 (2015), 229-244.  doi: 10.1016/j.bulsci.2014.08.011.  Google Scholar

[17]

J. Llibre and G. $\acute{S}$wirszcz, On the limit cycles of polynomial vector fields, Dyn. Contin. Discrete Impuls. Ser. A. Math. Anal., 18 (2011), 203-314.   Google Scholar

[18]

S. Li and Y. Zhao, Limit cycles of perturbed cubic isochronous center via the second order averaging method, Int. J. Bifur. Chaos, 24 (2014), 8pp. doi: 10.1142/S0218127414500357.  Google Scholar

[19]

J. N. Mather, Stability of $C^{\infty}$ Mappings: I. The Division Theorem, Ann. Math., 87 (1968), 89-104.  doi: 10.2307/1970595.  Google Scholar

[20]

D. D. Novaes and J. Torregrose, On extended Chebyshev systems with positive accuracy, J. Math. Anal. Appl., 448 (2017), 171-186.  doi: 10.1016/j.jmaa.2016.10.076.  Google Scholar

[21]

J. Sanders, F. Verhulst and J. Murdock, Averaging methods in nonlinear dynamical systems, 2$^{nd}$ edition, Applied Mathematical Sciences, Springer New York, 2007.  Google Scholar

[22]

Y. Xiong, Limit cycle bifurcations by perturbing piecewise smooth Hamiltonian systems with multiple parameters, J. Math. Anal. Appl., 421 (2015), 260-275. doi: 10.1016/j.jmaa.2014.07.013.  Google Scholar

[23]

Y. Xiong, M. Han and V. G. Romanovski, The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles, Int. J. Bifur. Chaos, 27 (2017), 14pp. doi: 10.1142/S0218127417501267.  Google Scholar

Figure 1.1.  Phase portrait of $ (1.3)|_{\varepsilon = \lambda = 0} $
Figure 2.1.  The periodic orbit $ L_{\lambda} $ of (2.1)$ |_{\varepsilon = 0} $
Figure 3.1.  The sketches of functions $ W_{i}(h) $, $ i = 1, 2, \cdots, 8 $
[1]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[2]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[3]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[4]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[5]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[6]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[7]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[8]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[9]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[10]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[11]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[12]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[13]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[14]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[15]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[16]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[17]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[18]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[19]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[20]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (101)
  • HTML views (86)
  • Cited by (0)

Other articles
by authors

[Back to Top]