• Previous Article
    Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation
  • CPAA Home
  • This Issue
  • Next Article
    Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters
January  2021, 20(1): 77-99. doi: 10.3934/cpaa.2020258

Scattering of the focusing energy-critical NLS with inverse square potential in the radial case

School of Mathematics, Southeast University, Nanjing, Jiangsu Province, 211189, China

Received  March 2020 Revised  August 2020 Published  January 2021 Early access  October 2020

Fund Project: K. Yang was supported in part by the "Jiangsu Shuang Chuang Doctoral Plan" and the Natural Science Foundation of Jiangsu Province(China): BK20200346 and BK20190323

We consider the Cauchy problem of the focusing energy-critical nonlinear Schrödinger equation with an inverse square potential. We prove that if any radial solution obeys the supreme of the kinetic energy over the maximal lifespan is below the kinetic energy of the ground state solution, then the solution exists globally in time and scatters in both time directions.

Citation: Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure and Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258
References:
[1]

T. Aubin, Problémes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11 (1976), 573-598. 

[2]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Am. J. Math., 121 (1999), 131-175. 

[3]

J. Bourgain, Global well-posedness of defocusing 3D critical NLS in the radial case, J. Am. Math. Soc., 12 (1999), 145-171.  doi: 10.1090/S0894-0347-99-00283-0.

[4]

J. Bourgain, New global well-posedness results for nonlinear Schrödinger equations, AMS Colloquium Publications, 46, 1999. doi: 10.1090/coll/046.

[5]

N. BurqF. PlanchonJ. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549.  doi: 10.1016/S0022-1236(03)00238-6.

[6]

T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes, 10 (2003). doi: 10.1090/cln/010.

[7]

T. Cazenave and F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^{s}$, Nonlinear Anal., 14 (1990), 807-836.  doi: 10.1016/0362-546X(90)90023-A.

[8]

Y. Chen, J. Lu and F. Meng, Focusing nonlinear Hartree equation with inverse-square potential, arXiv: 1907.12757. doi: 10.1063/1.5054167.

[9]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{3}$, Annals of Math., 167 (2008), 767-865.  doi: 10.4007/annals.2008.167.767.

[10]

B. Dodson, Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension $d = 4$, Ann. Sci. Éc. Norm. Supér, 52 (2019), 139-180. 

[11]

G. Grillakis, On nonlinear Schrödinger equations, Commun. PDE, 25 (2000), 1827-1844.  doi: 10.1080/03605300008821569.

[12]

M. Keel and T. Tao, Endpoint Strichartz estimates, Am. J. Math., 120 (1998), 955-980. 

[13]

C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.

[14]

C. Kenig and F. Merle, Scattering for bounded solutions to the cubic, defocusing NLS in 3 dimensions, T. Am. Math. Soc., 362 (2010), 1937-1962.  doi: 10.1090/S0002-9947-09-04722-9.

[15]

S. Keraani, On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006), 171-192.  doi: 10.1016/j.jfa.2005.10.005.

[16]

R. Killip, C. Miao, M. Visan, J. Zhang and J. Zheng, Sobolev spaces adapted to the Schrödinger operator with inverse-square potential, Math. Z., 288 (2018), 1273-1298. doi: 10.1007/s00209-017-1934-8.

[17]

R. KillipJ. MurphyM. Visan and J. Zheng, The focusing cubic NLS with inverse-square potential in three space dimensions, Differ. Integral Equ., 30 (2017), 161-206. 

[18]

R. Killip, C. Miao, M. Visan, J. Zhang and J. Zheng, The energy-critical NLS with inverse-square potential, Discrete Contin. Dyn. Syst., 37 (2017), 3831-3866. doi: 10.3934/dcds.2017162.

[19]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Am. J. Math., 132 (2010), 361–424. doi: 10.1353/ajm.0.0107.

[20]

R. Killip and M. Visan, Nonlinear Schrö dinger equations at critical regularity, Evol. Equ., (2009), 89–100. doi: 10.1007/s00208-013-0960-z.

[21]

R. Killip, M. Visan, and X. Zhang, Quintic NLS in the exterior of a strictly convex obstacle, Am. J. Math., 138 (2016), 1193-1346. doi: 10.1353/ajm.2016.0039.

[22]

R. Killip, M. Visan and X. Zhang, Finite-dimensional approximation and non-squeezing for the cubic nonlinear Schrödinger equation on $\mathbb{R}^{2}$. arXiv: 1606.07738.

[23]

D. Li and X. Zhang, Dynamics for the energy critical nonlinear Schrödinger equation in high dimensions, J. Funct. Anal., 256 (2009), 1928-1961. doi: 10.1016/j.jfa.2008.12.007.

[24]

D. Li and X. Zhang, Dynamics for the energy critical nonlinear Wave equation in high dimensions, Trans. AMS., 363 (2011), 1137-1160. doi: 10.1090/S0002-9947-2010-04999-2.

[25]

J. LuC. Miao and J. Murphy, Scattering in $H^{1}$ for the intercritical NLS with an inverse square potential, J. Differ. Equ., 264 (2018), 3174-3211.  doi: 10.1016/j.jde.2017.11.015.

[26]

F. Merle and L. Vega, Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation in 2D, International Mathematics Research Notices, 1998 (1998), 399-425.  doi: 10.1155/S1073792898000270.

[27]

C. MiaoJ. Murphy and J. Zheng, The energy-critical nonlinear wave equation with an inverse-square potential, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 37 (2020), 417-456.  doi: 10.1016/j.anihpc.2019.09.004.

[28]

F. PlanchonJ. Stalker and A. S. Tahvildar-Zadeh, Dispersive estimates for wave equation with the inverse-square potential, Discrete Contin. Dyn. Syst. Ser. A, 9 (2003), 1387-1400.  doi: 10.3934/dcds.2003.9.1387.

[29]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{1+4}$, Am. J. Math., 129 (2007), 1-60.  doi: 10.1353/ajm.2007.0004.

[30]

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura. Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.

[31]

T. Tao, Global well-posedness and scattering for higher-dimensional energy-critical non-linear Schrödinger equation for radial data, New York J. Math., 11 (2005), 57-80. 

[32]

T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differ. Equ., 118 (2005), 1-28. 

[33]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153.  doi: 10.1006/jfan.1999.3556.

[34]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374.  doi: 10.1215/S0012-7094-07-13825-0.

[35]

K. Yang, Dynamics of The Energy Critical Nonlinear Schrödinger Equation with Inverse Square Potential, PhD thesis, University of Iowa, 2017.

[36]

K. Yang, The focusing NLS on exterior domains in three dimensions, Commun. Pure. Appl. Anal., 16 (2017), 2269-2297.  doi: 10.3934/cpaa.2017112.

[37]

K. Yang, The symplectic non-squeezing properties of mass subcritical Hartree equations, J. Math. Anal. Appl., 449 (2017), 427-455.  doi: 10.1016/j.jmaa.2016.11.079.

[38]

K. Yang, Scattering of the energy-critical NLS with inverse square potential, J. Math. Anal. Appl., 487 (2020), 124006. doi: 10.1016/j.jmaa.2020.124006.

[39]

J. Zhang and J. Zheng, Strichartz estimates and wave equation in a conic singular space, Math. Ann., 376 (2020), 525-581. doi: 10.1007/s00208-019-01892-7.

[40]

J. Zhang and J. Zheng, Scattering theory for nonlinear Schrödinger with inverse-square potential, J. Funct. Anal., 267 (2014), 2907-2932.  doi: 10.1016/j.jfa.2014.08.012.

[41]

J. Zheng, Focusing NLS with inverse square potential, J. Math. Phys., 59 (2018), 111502, 14pp. doi: 10.1063/1.5054167.

show all references

References:
[1]

T. Aubin, Problémes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11 (1976), 573-598. 

[2]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Am. J. Math., 121 (1999), 131-175. 

[3]

J. Bourgain, Global well-posedness of defocusing 3D critical NLS in the radial case, J. Am. Math. Soc., 12 (1999), 145-171.  doi: 10.1090/S0894-0347-99-00283-0.

[4]

J. Bourgain, New global well-posedness results for nonlinear Schrödinger equations, AMS Colloquium Publications, 46, 1999. doi: 10.1090/coll/046.

[5]

N. BurqF. PlanchonJ. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549.  doi: 10.1016/S0022-1236(03)00238-6.

[6]

T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes, 10 (2003). doi: 10.1090/cln/010.

[7]

T. Cazenave and F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^{s}$, Nonlinear Anal., 14 (1990), 807-836.  doi: 10.1016/0362-546X(90)90023-A.

[8]

Y. Chen, J. Lu and F. Meng, Focusing nonlinear Hartree equation with inverse-square potential, arXiv: 1907.12757. doi: 10.1063/1.5054167.

[9]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{3}$, Annals of Math., 167 (2008), 767-865.  doi: 10.4007/annals.2008.167.767.

[10]

B. Dodson, Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension $d = 4$, Ann. Sci. Éc. Norm. Supér, 52 (2019), 139-180. 

[11]

G. Grillakis, On nonlinear Schrödinger equations, Commun. PDE, 25 (2000), 1827-1844.  doi: 10.1080/03605300008821569.

[12]

M. Keel and T. Tao, Endpoint Strichartz estimates, Am. J. Math., 120 (1998), 955-980. 

[13]

C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.

[14]

C. Kenig and F. Merle, Scattering for bounded solutions to the cubic, defocusing NLS in 3 dimensions, T. Am. Math. Soc., 362 (2010), 1937-1962.  doi: 10.1090/S0002-9947-09-04722-9.

[15]

S. Keraani, On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006), 171-192.  doi: 10.1016/j.jfa.2005.10.005.

[16]

R. Killip, C. Miao, M. Visan, J. Zhang and J. Zheng, Sobolev spaces adapted to the Schrödinger operator with inverse-square potential, Math. Z., 288 (2018), 1273-1298. doi: 10.1007/s00209-017-1934-8.

[17]

R. KillipJ. MurphyM. Visan and J. Zheng, The focusing cubic NLS with inverse-square potential in three space dimensions, Differ. Integral Equ., 30 (2017), 161-206. 

[18]

R. Killip, C. Miao, M. Visan, J. Zhang and J. Zheng, The energy-critical NLS with inverse-square potential, Discrete Contin. Dyn. Syst., 37 (2017), 3831-3866. doi: 10.3934/dcds.2017162.

[19]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Am. J. Math., 132 (2010), 361–424. doi: 10.1353/ajm.0.0107.

[20]

R. Killip and M. Visan, Nonlinear Schrö dinger equations at critical regularity, Evol. Equ., (2009), 89–100. doi: 10.1007/s00208-013-0960-z.

[21]

R. Killip, M. Visan, and X. Zhang, Quintic NLS in the exterior of a strictly convex obstacle, Am. J. Math., 138 (2016), 1193-1346. doi: 10.1353/ajm.2016.0039.

[22]

R. Killip, M. Visan and X. Zhang, Finite-dimensional approximation and non-squeezing for the cubic nonlinear Schrödinger equation on $\mathbb{R}^{2}$. arXiv: 1606.07738.

[23]

D. Li and X. Zhang, Dynamics for the energy critical nonlinear Schrödinger equation in high dimensions, J. Funct. Anal., 256 (2009), 1928-1961. doi: 10.1016/j.jfa.2008.12.007.

[24]

D. Li and X. Zhang, Dynamics for the energy critical nonlinear Wave equation in high dimensions, Trans. AMS., 363 (2011), 1137-1160. doi: 10.1090/S0002-9947-2010-04999-2.

[25]

J. LuC. Miao and J. Murphy, Scattering in $H^{1}$ for the intercritical NLS with an inverse square potential, J. Differ. Equ., 264 (2018), 3174-3211.  doi: 10.1016/j.jde.2017.11.015.

[26]

F. Merle and L. Vega, Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation in 2D, International Mathematics Research Notices, 1998 (1998), 399-425.  doi: 10.1155/S1073792898000270.

[27]

C. MiaoJ. Murphy and J. Zheng, The energy-critical nonlinear wave equation with an inverse-square potential, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 37 (2020), 417-456.  doi: 10.1016/j.anihpc.2019.09.004.

[28]

F. PlanchonJ. Stalker and A. S. Tahvildar-Zadeh, Dispersive estimates for wave equation with the inverse-square potential, Discrete Contin. Dyn. Syst. Ser. A, 9 (2003), 1387-1400.  doi: 10.3934/dcds.2003.9.1387.

[29]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{1+4}$, Am. J. Math., 129 (2007), 1-60.  doi: 10.1353/ajm.2007.0004.

[30]

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura. Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.

[31]

T. Tao, Global well-posedness and scattering for higher-dimensional energy-critical non-linear Schrödinger equation for radial data, New York J. Math., 11 (2005), 57-80. 

[32]

T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differ. Equ., 118 (2005), 1-28. 

[33]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153.  doi: 10.1006/jfan.1999.3556.

[34]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374.  doi: 10.1215/S0012-7094-07-13825-0.

[35]

K. Yang, Dynamics of The Energy Critical Nonlinear Schrödinger Equation with Inverse Square Potential, PhD thesis, University of Iowa, 2017.

[36]

K. Yang, The focusing NLS on exterior domains in three dimensions, Commun. Pure. Appl. Anal., 16 (2017), 2269-2297.  doi: 10.3934/cpaa.2017112.

[37]

K. Yang, The symplectic non-squeezing properties of mass subcritical Hartree equations, J. Math. Anal. Appl., 449 (2017), 427-455.  doi: 10.1016/j.jmaa.2016.11.079.

[38]

K. Yang, Scattering of the energy-critical NLS with inverse square potential, J. Math. Anal. Appl., 487 (2020), 124006. doi: 10.1016/j.jmaa.2020.124006.

[39]

J. Zhang and J. Zheng, Strichartz estimates and wave equation in a conic singular space, Math. Ann., 376 (2020), 525-581. doi: 10.1007/s00208-019-01892-7.

[40]

J. Zhang and J. Zheng, Scattering theory for nonlinear Schrödinger with inverse-square potential, J. Funct. Anal., 267 (2014), 2907-2932.  doi: 10.1016/j.jfa.2014.08.012.

[41]

J. Zheng, Focusing NLS with inverse square potential, J. Math. Phys., 59 (2018), 111502, 14pp. doi: 10.1063/1.5054167.

[1]

Rowan Killip, Changxing Miao, Monica Visan, Junyong Zhang, Jiqiang Zheng. The energy-critical NLS with inverse-square potential. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3831-3866. doi: 10.3934/dcds.2017162

[2]

Jian Zhang, Wen Zhang, Xianhua Tang. Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4565-4583. doi: 10.3934/dcds.2017195

[3]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[4]

Takahisa Inui, Nobu Kishimoto, Kuranosuke Nishimura. Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6299-6353. doi: 10.3934/dcds.2019275

[5]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[6]

Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations and Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022

[7]

Joachim Krieger, Kenji Nakanishi, Wilhelm Schlag. Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2423-2450. doi: 10.3934/dcds.2013.33.2423

[8]

Yu Su, Zhaosheng Feng. Ground state solutions for the fractional problems with dipole-type potential and critical exponent. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1953-1968. doi: 10.3934/cpaa.2021111

[9]

Yu Su, Zhaosheng Feng. Ground state solutions and decay estimation of Choquard equation with critical exponent and Dipole potential. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022112

[10]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[11]

Casey Jao. Energy-critical NLS with potentials of quadratic growth. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 563-587. doi: 10.3934/dcds.2018025

[12]

Riccardo Adami, Diego Noja, Nicola Visciglia. Constrained energy minimization and ground states for NLS with point defects. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1155-1188. doi: 10.3934/dcdsb.2013.18.1155

[13]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Abdelaziz Rhandi. Kolmogorov equations perturbed by an inverse-square potential. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 623-630. doi: 10.3934/dcdss.2011.4.623

[14]

Scipio Cuccagna, Masaya Maeda. On weak interaction between a ground state and a trapping potential. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3343-3376. doi: 10.3934/dcds.2015.35.3343

[15]

Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems and Imaging, 2011, 5 (4) : 843-858. doi: 10.3934/ipi.2011.5.843

[16]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[17]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. $L^p$ Estimates for the wave equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 427-442. doi: 10.3934/dcds.2003.9.427

[18]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[19]

Kazuhiro Ishige, Asato Mukai. Large time behavior of solutions of the heat equation with inverse square potential. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4041-4069. doi: 10.3934/dcds.2018176

[20]

Patrick Martinez, Judith Vancostenoble. The cost of boundary controllability for a parabolic equation with inverse square potential. Evolution Equations and Control Theory, 2019, 8 (2) : 397-422. doi: 10.3934/eect.2019020

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (287)
  • HTML views (75)
  • Cited by (0)

Other articles
by authors

[Back to Top]