-
Previous Article
Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential
- CPAA Home
- This Issue
-
Next Article
Scattering of the focusing energy-critical NLS with inverse square potential in the radial case
Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation
1. | Department of Mathematics, ICEx-UFMG, Universidade Federal de Minas Gerais-ICEx, Caixa Postal 702, CEP 30123-970, Belo Horizonte-MG, Brazil |
2. | Department of Mathematics, CCN, Universidade Federal do Piauí, Ininga - CEP: 64049-550, Teresina - PI, Brasil |
$ \begin{equation*} i\partial_{t}u+\Delta u+|x|^{-b}|u|^{p-1}u = 0. \end{equation*} $ |
$ H^{1}(\mathbb{R^{N}}) $ |
$ L^{2} $ |
References:
[1] | G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2007. Google Scholar |
[2] |
A. H. Ardila and V. D. Dinh, Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation, Z. Angew. Math. Phys., 71 (2020), 24pp.
doi: 10.1007/s00033-020-01301-z. |
[3] |
T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003.
doi: 10.1090/cln/010. |
[4] |
J. Chen,
On a class of nonlinear inhomogeneous Schrödinger equations, J. Appl. Math. Comput., 32 (2010), 237-253.
doi: 10.1007/s12190-009-0246-5. |
[5] |
J. Chen and B. Guo,
Sharp global existence and blowing up results for inhomogeneous Schrödinger equations, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 357-367.
doi: 10.3934/dcdsb.2007.8.357. |
[6] |
V. Combet and F. Genoud,
Classification of minimal mass blow-up solutions for an ${L}^{2}$ critical inhomogeneous NLS, J. Evol. Equ., 16 (2016), 483-500.
doi: 10.1007/s00028-015-0309-z. |
[7] |
D. Du, Y. Wu and K. Zhang,
On blow-up criterion for the nonlinear Schrödinger equation, Discrete Contin.Dynl. Sys, 36 (2016), 3639-3650.
doi: 10.3934/dcds.2016.36.3639. |
[8] |
A. de Bouard and R. Fukuizumi,
Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri Poincaré, 6 (2015), 1157-1177.
doi: 10.1007/s00023-005-0236-6. |
[9] |
L. G. Farah,
Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 16 (2016), 193-208.
doi: 10.1007/s00028-015-0298-y. |
[10] |
G. Fibich and X. P. Wang,
Equations with inhomogeneous nonlinearities, Physica D, 175 (2003), 96-108.
doi: 10.1016/S0167-2789(02)00626-7. |
[11] |
R. Fukuizumi,
Equations with critical power nonlinearity and potentials., Adv. Differ. Equ., 10 (2005), 259-276.
|
[12] |
F. Genoud,
Bifurcation and stability of travelling waves in self-focusing planar waveguides, Adv. Nonlinear Stu., 10 (2010), 357-400.
doi: 10.1515/ans-2010-0207. |
[13] |
F. Genoud,
An inhomogeneous, ${L}^2$-critical, nonlinear Schrödinger equation, Z. Anal. Anwend., 31 (2012), 283-290.
doi: 10.4171/ZAA/1460. |
[14] |
F. Genoud and C. Stuart,
Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21 (2008), 137-186.
doi: 10.3934/dcds.2008.21.137. |
[15] |
T. Saanouni, Remarks on the inhomogeneous fractional nonlinear Schrödinger equation, J. Math Phys., 57 (2016) 081503.
doi: 10.1063/1.4960045. |
[16] |
J. Toland,
Uniqueness of positive solutions of some semilinear Sturm-Liouville problemson the half line, Proc. Roy. Soc. Edinburgh Sect. A, 97 (1984), 259-263.
doi: 10.1017/S0308210500032042. |
[17] |
E. Yanagida,
Uniqueness of positive radial solutions of $\delta u+g(r)u+h(r)u^{p}=0$ in $\mathbb{R}^{N}$, Arch. Rat. Mech. Anal, 115 (1991), 257-274.
doi: 10.1007/BF00380770. |
[18] |
S. Zhu,
Blow-up solutions for the inhomogeneous Schrödinger equation with ${L}^{2}$ supercritical nonlinearity, J. Math. Anal. Appl., 409 (2014), 760-776.
doi: 10.1016/j.jmaa.2013.07.029. |
show all references
References:
[1] | G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2007. Google Scholar |
[2] |
A. H. Ardila and V. D. Dinh, Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation, Z. Angew. Math. Phys., 71 (2020), 24pp.
doi: 10.1007/s00033-020-01301-z. |
[3] |
T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003.
doi: 10.1090/cln/010. |
[4] |
J. Chen,
On a class of nonlinear inhomogeneous Schrödinger equations, J. Appl. Math. Comput., 32 (2010), 237-253.
doi: 10.1007/s12190-009-0246-5. |
[5] |
J. Chen and B. Guo,
Sharp global existence and blowing up results for inhomogeneous Schrödinger equations, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 357-367.
doi: 10.3934/dcdsb.2007.8.357. |
[6] |
V. Combet and F. Genoud,
Classification of minimal mass blow-up solutions for an ${L}^{2}$ critical inhomogeneous NLS, J. Evol. Equ., 16 (2016), 483-500.
doi: 10.1007/s00028-015-0309-z. |
[7] |
D. Du, Y. Wu and K. Zhang,
On blow-up criterion for the nonlinear Schrödinger equation, Discrete Contin.Dynl. Sys, 36 (2016), 3639-3650.
doi: 10.3934/dcds.2016.36.3639. |
[8] |
A. de Bouard and R. Fukuizumi,
Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri Poincaré, 6 (2015), 1157-1177.
doi: 10.1007/s00023-005-0236-6. |
[9] |
L. G. Farah,
Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 16 (2016), 193-208.
doi: 10.1007/s00028-015-0298-y. |
[10] |
G. Fibich and X. P. Wang,
Equations with inhomogeneous nonlinearities, Physica D, 175 (2003), 96-108.
doi: 10.1016/S0167-2789(02)00626-7. |
[11] |
R. Fukuizumi,
Equations with critical power nonlinearity and potentials., Adv. Differ. Equ., 10 (2005), 259-276.
|
[12] |
F. Genoud,
Bifurcation and stability of travelling waves in self-focusing planar waveguides, Adv. Nonlinear Stu., 10 (2010), 357-400.
doi: 10.1515/ans-2010-0207. |
[13] |
F. Genoud,
An inhomogeneous, ${L}^2$-critical, nonlinear Schrödinger equation, Z. Anal. Anwend., 31 (2012), 283-290.
doi: 10.4171/ZAA/1460. |
[14] |
F. Genoud and C. Stuart,
Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21 (2008), 137-186.
doi: 10.3934/dcds.2008.21.137. |
[15] |
T. Saanouni, Remarks on the inhomogeneous fractional nonlinear Schrödinger equation, J. Math Phys., 57 (2016) 081503.
doi: 10.1063/1.4960045. |
[16] |
J. Toland,
Uniqueness of positive solutions of some semilinear Sturm-Liouville problemson the half line, Proc. Roy. Soc. Edinburgh Sect. A, 97 (1984), 259-263.
doi: 10.1017/S0308210500032042. |
[17] |
E. Yanagida,
Uniqueness of positive radial solutions of $\delta u+g(r)u+h(r)u^{p}=0$ in $\mathbb{R}^{N}$, Arch. Rat. Mech. Anal, 115 (1991), 257-274.
doi: 10.1007/BF00380770. |
[18] |
S. Zhu,
Blow-up solutions for the inhomogeneous Schrödinger equation with ${L}^{2}$ supercritical nonlinearity, J. Math. Anal. Appl., 409 (2014), 760-776.
doi: 10.1016/j.jmaa.2013.07.029. |
[1] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[2] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[3] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[4] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[5] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[6] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[7] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[8] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[9] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[10] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[11] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[12] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[13] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[14] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[15] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[16] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[17] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[18] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[19] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[20] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]