-
Previous Article
Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential
- CPAA Home
- This Issue
-
Next Article
Scattering of the focusing energy-critical NLS with inverse square potential in the radial case
Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation
1. | Department of Mathematics, ICEx-UFMG, Universidade Federal de Minas Gerais-ICEx, Caixa Postal 702, CEP 30123-970, Belo Horizonte-MG, Brazil |
2. | Department of Mathematics, CCN, Universidade Federal do Piauí, Ininga - CEP: 64049-550, Teresina - PI, Brasil |
$ \begin{equation*} i\partial_{t}u+\Delta u+|x|^{-b}|u|^{p-1}u = 0. \end{equation*} $ |
$ H^{1}(\mathbb{R^{N}}) $ |
$ L^{2} $ |
References:
[1] |
G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2007.
![]() |
[2] |
A. H. Ardila and V. D. Dinh, Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation, Z. Angew. Math. Phys., 71 (2020), 24pp.
doi: 10.1007/s00033-020-01301-z. |
[3] |
T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003.
doi: 10.1090/cln/010. |
[4] |
J. Chen,
On a class of nonlinear inhomogeneous Schrödinger equations, J. Appl. Math. Comput., 32 (2010), 237-253.
doi: 10.1007/s12190-009-0246-5. |
[5] |
J. Chen and B. Guo,
Sharp global existence and blowing up results for inhomogeneous Schrödinger equations, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 357-367.
doi: 10.3934/dcdsb.2007.8.357. |
[6] |
V. Combet and F. Genoud,
Classification of minimal mass blow-up solutions for an ${L}^{2}$ critical inhomogeneous NLS, J. Evol. Equ., 16 (2016), 483-500.
doi: 10.1007/s00028-015-0309-z. |
[7] |
D. Du, Y. Wu and K. Zhang,
On blow-up criterion for the nonlinear Schrödinger equation, Discrete Contin.Dynl. Sys, 36 (2016), 3639-3650.
doi: 10.3934/dcds.2016.36.3639. |
[8] |
A. de Bouard and R. Fukuizumi,
Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri Poincaré, 6 (2015), 1157-1177.
doi: 10.1007/s00023-005-0236-6. |
[9] |
L. G. Farah,
Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 16 (2016), 193-208.
doi: 10.1007/s00028-015-0298-y. |
[10] |
G. Fibich and X. P. Wang,
Equations with inhomogeneous nonlinearities, Physica D, 175 (2003), 96-108.
doi: 10.1016/S0167-2789(02)00626-7. |
[11] |
R. Fukuizumi,
Equations with critical power nonlinearity and potentials., Adv. Differ. Equ., 10 (2005), 259-276.
|
[12] |
F. Genoud,
Bifurcation and stability of travelling waves in self-focusing planar waveguides, Adv. Nonlinear Stu., 10 (2010), 357-400.
doi: 10.1515/ans-2010-0207. |
[13] |
F. Genoud,
An inhomogeneous, ${L}^2$-critical, nonlinear Schrödinger equation, Z. Anal. Anwend., 31 (2012), 283-290.
doi: 10.4171/ZAA/1460. |
[14] |
F. Genoud and C. Stuart,
Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21 (2008), 137-186.
doi: 10.3934/dcds.2008.21.137. |
[15] |
T. Saanouni, Remarks on the inhomogeneous fractional nonlinear Schrödinger equation, J. Math Phys., 57 (2016) 081503.
doi: 10.1063/1.4960045. |
[16] |
J. Toland,
Uniqueness of positive solutions of some semilinear Sturm-Liouville problemson the half line, Proc. Roy. Soc. Edinburgh Sect. A, 97 (1984), 259-263.
doi: 10.1017/S0308210500032042. |
[17] |
E. Yanagida,
Uniqueness of positive radial solutions of $\delta u+g(r)u+h(r)u^{p}=0$ in $\mathbb{R}^{N}$, Arch. Rat. Mech. Anal, 115 (1991), 257-274.
doi: 10.1007/BF00380770. |
[18] |
S. Zhu,
Blow-up solutions for the inhomogeneous Schrödinger equation with ${L}^{2}$ supercritical nonlinearity, J. Math. Anal. Appl., 409 (2014), 760-776.
doi: 10.1016/j.jmaa.2013.07.029. |
show all references
References:
[1] |
G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2007.
![]() |
[2] |
A. H. Ardila and V. D. Dinh, Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation, Z. Angew. Math. Phys., 71 (2020), 24pp.
doi: 10.1007/s00033-020-01301-z. |
[3] |
T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003.
doi: 10.1090/cln/010. |
[4] |
J. Chen,
On a class of nonlinear inhomogeneous Schrödinger equations, J. Appl. Math. Comput., 32 (2010), 237-253.
doi: 10.1007/s12190-009-0246-5. |
[5] |
J. Chen and B. Guo,
Sharp global existence and blowing up results for inhomogeneous Schrödinger equations, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 357-367.
doi: 10.3934/dcdsb.2007.8.357. |
[6] |
V. Combet and F. Genoud,
Classification of minimal mass blow-up solutions for an ${L}^{2}$ critical inhomogeneous NLS, J. Evol. Equ., 16 (2016), 483-500.
doi: 10.1007/s00028-015-0309-z. |
[7] |
D. Du, Y. Wu and K. Zhang,
On blow-up criterion for the nonlinear Schrödinger equation, Discrete Contin.Dynl. Sys, 36 (2016), 3639-3650.
doi: 10.3934/dcds.2016.36.3639. |
[8] |
A. de Bouard and R. Fukuizumi,
Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri Poincaré, 6 (2015), 1157-1177.
doi: 10.1007/s00023-005-0236-6. |
[9] |
L. G. Farah,
Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 16 (2016), 193-208.
doi: 10.1007/s00028-015-0298-y. |
[10] |
G. Fibich and X. P. Wang,
Equations with inhomogeneous nonlinearities, Physica D, 175 (2003), 96-108.
doi: 10.1016/S0167-2789(02)00626-7. |
[11] |
R. Fukuizumi,
Equations with critical power nonlinearity and potentials., Adv. Differ. Equ., 10 (2005), 259-276.
|
[12] |
F. Genoud,
Bifurcation and stability of travelling waves in self-focusing planar waveguides, Adv. Nonlinear Stu., 10 (2010), 357-400.
doi: 10.1515/ans-2010-0207. |
[13] |
F. Genoud,
An inhomogeneous, ${L}^2$-critical, nonlinear Schrödinger equation, Z. Anal. Anwend., 31 (2012), 283-290.
doi: 10.4171/ZAA/1460. |
[14] |
F. Genoud and C. Stuart,
Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21 (2008), 137-186.
doi: 10.3934/dcds.2008.21.137. |
[15] |
T. Saanouni, Remarks on the inhomogeneous fractional nonlinear Schrödinger equation, J. Math Phys., 57 (2016) 081503.
doi: 10.1063/1.4960045. |
[16] |
J. Toland,
Uniqueness of positive solutions of some semilinear Sturm-Liouville problemson the half line, Proc. Roy. Soc. Edinburgh Sect. A, 97 (1984), 259-263.
doi: 10.1017/S0308210500032042. |
[17] |
E. Yanagida,
Uniqueness of positive radial solutions of $\delta u+g(r)u+h(r)u^{p}=0$ in $\mathbb{R}^{N}$, Arch. Rat. Mech. Anal, 115 (1991), 257-274.
doi: 10.1007/BF00380770. |
[18] |
S. Zhu,
Blow-up solutions for the inhomogeneous Schrödinger equation with ${L}^{2}$ supercritical nonlinearity, J. Math. Anal. Appl., 409 (2014), 760-776.
doi: 10.1016/j.jmaa.2013.07.029. |
[1] |
Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169 |
[2] |
Jinmyong An, Roesong Jang, Jinmyong Kim. Global existence and blow-up for the focusing inhomogeneous nonlinear Schrödinger equation with inverse-square potential. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022111 |
[3] |
Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827 |
[4] |
Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639 |
[5] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[6] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[7] |
Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 |
[8] |
Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 |
[9] |
Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027 |
[10] |
Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082 |
[11] |
Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022106 |
[12] |
Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072 |
[13] |
Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11 |
[14] |
Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903 |
[15] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[16] |
Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic and Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043 |
[17] |
Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure and Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721 |
[18] |
Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535 |
[19] |
Quang-Minh Tran, Hong-Danh Pham. Global existence and blow-up results for a nonlinear model for a dynamic suspension bridge. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4521-4550. doi: 10.3934/dcdss.2021135 |
[20] |
Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]