• Previous Article
    Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional
  • CPAA Home
  • This Issue
  • Next Article
    Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles
January  2021, 20(1): 301-317. doi: 10.3934/cpaa.2020267

Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions

Department of Mathematics and Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

Received  January 2020 Revised  September 2020 Published  January 2021 Early access  November 2020

Fund Project: The author is supported by Yau Mathematical Sciences Center, Tsinghua University

In this paper we study the boundary regularity of solutions to the Dirichlet problem for a class of Monge-Ampère type equations with nonzero boundary conditions. We construct global Hölder estimates for convex solutions to the problem and emphasize that the boundary regularity essentially depends on the convexity of the domain. The proof is based on a careful study of the concept of $ (a,\eta) $ type convex domain and a family of auxiliary functions.

Citation: Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267
References:
[1]

L. CaffarelliL. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Commun. Pure Appl. Math., 37 (1984), 369-402.  doi: 10.1002/cpa.3160370306.  Google Scholar

[2]

S. Y. Cheng and S. T. Yau, On the regularity of the Monge-Ampère equation $\det\frac{\partial^2u}{\partial x_i\partial x_j} = F(x, u)$, Commun. Pure Appl. Math., 30 (1977), 41-68.  doi: 10.1002/cpa.3160300104.  Google Scholar

[3]

S. Y. Cheng and S. T. Yau, Complete affine hypersurfaces. Ⅰ. The completeness of affine metrics, Commun. Pure Appl. Math., 39 (1986), 839-866.  doi: 10.1002/cpa.3160390606.  Google Scholar

[4]

K. S. Chou and X. J. Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33-83.  doi: 10.1016/j.aim.2005.07.004.  Google Scholar

[5]

A. Figalli, The Monge-Ampère Equation and Its Applications, European Mathematical Society (EMS), Zürich, 2017. doi: 10.4171/170.  Google Scholar

[6]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 2001. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[7]

P. F. GuanN. S. Trudinger and X. J. Wang, On the Dirichlet problem for degenerate Monge-Ampère equations, Acta Math., 182 (1999), 87-104.  doi: 10.1007/BF02392824.  Google Scholar

[8]

Y. He, Q. R. Li and X. J. Wang, Multiple solutions of the $L_p$-Minkowski problem, Calc. Var. Partial Differ. Equ., 55 (2016), 13 pp. doi: 10.1007/s00526-016-1063-y.  Google Scholar

[9]

Y. HuangF. D. Jiang and J. K. Liu, Boundary $C^{2, \alpha}$ estimates for Monge-Ampère type equations, Adv. Math., 281 (2015), 706-733.  doi: 10.1016/j.aim.2014.12.043.  Google Scholar

[10]

H. Y. Jian and Y. Li, Optimal boundary regularity for a singular Monge-Ampère equation, J. Differ. Equ., 264 (2018), 6873-6890.  doi: 10.1016/j.jde.2018.01.051.  Google Scholar

[11]

H. Y. Jian, Y. Li and X. S. Tu, On a class of degenerate and singular Monge-Ampère equations, arXiv: 1908.06396. Google Scholar

[12]

H. Y. Jian and X. J. Wang, Bernstein theorem and regularity for a class of Monge-Ampère equations, J. Differ. Geom., 93 (2013), 431-469.  doi: 10.4310/jdg/1361844941.  Google Scholar

[13]

H. Y. JianX. J. Wang and Y. W. Zhao, Global smoothness for a singular Monge-Ampère equation, J. Differ. Equ., 263 (2017), 7250-7262.  doi: 10.1016/j.jde.2017.08.004.  Google Scholar

[14]

N. Q. Le and O. Savin, Schauder estimates for degenerate Monge-Ampère equations and smoothness of the eigenfunctions, Invent. Math., 207 (2017), 389-423.  doi: 10.1007/s00222-016-0677-1.  Google Scholar

[15]

M. N. Li and Y. Li, Global regularity for a class of Monge-Ampère type equations, Sci. China Math., (2020), 16pp. doi: 10.1007/s11425-019-1691-1.  Google Scholar

[16]

C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in Contributions to Analysis, Academic Press, New York, (1974), 245-272.  Google Scholar

[17]

N. S. Trudinger and J. I. E. Urbas, The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Austral. Math. Soc., 28 (1983), 217-231.  doi: 10.1017/S000497270002089X.  Google Scholar

[18]

N. S. Trudinger and X. J. Wang, Boundary regularity for the Monge-Ampère and affine maximal surface equations, Ann. Math., 167 (2008), 993-1028.  doi: 10.4007/annals.2008.167.993.  Google Scholar

[19]

N. S. Trudinger and X. J. Wang, The Monge-Ampère equation and its geometric applications, in Handbook of Geometric Analysis, International Press, Somerville, MA, (2008), 467-524.  Google Scholar

[20]

J. I. E. Urbas, Global Hölder estimates for equations of Monge-Ampère type, Invent. Math., 91 (1988), 1-29.  doi: 10.1007/BF01404910.  Google Scholar

show all references

References:
[1]

L. CaffarelliL. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Commun. Pure Appl. Math., 37 (1984), 369-402.  doi: 10.1002/cpa.3160370306.  Google Scholar

[2]

S. Y. Cheng and S. T. Yau, On the regularity of the Monge-Ampère equation $\det\frac{\partial^2u}{\partial x_i\partial x_j} = F(x, u)$, Commun. Pure Appl. Math., 30 (1977), 41-68.  doi: 10.1002/cpa.3160300104.  Google Scholar

[3]

S. Y. Cheng and S. T. Yau, Complete affine hypersurfaces. Ⅰ. The completeness of affine metrics, Commun. Pure Appl. Math., 39 (1986), 839-866.  doi: 10.1002/cpa.3160390606.  Google Scholar

[4]

K. S. Chou and X. J. Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33-83.  doi: 10.1016/j.aim.2005.07.004.  Google Scholar

[5]

A. Figalli, The Monge-Ampère Equation and Its Applications, European Mathematical Society (EMS), Zürich, 2017. doi: 10.4171/170.  Google Scholar

[6]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 2001. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[7]

P. F. GuanN. S. Trudinger and X. J. Wang, On the Dirichlet problem for degenerate Monge-Ampère equations, Acta Math., 182 (1999), 87-104.  doi: 10.1007/BF02392824.  Google Scholar

[8]

Y. He, Q. R. Li and X. J. Wang, Multiple solutions of the $L_p$-Minkowski problem, Calc. Var. Partial Differ. Equ., 55 (2016), 13 pp. doi: 10.1007/s00526-016-1063-y.  Google Scholar

[9]

Y. HuangF. D. Jiang and J. K. Liu, Boundary $C^{2, \alpha}$ estimates for Monge-Ampère type equations, Adv. Math., 281 (2015), 706-733.  doi: 10.1016/j.aim.2014.12.043.  Google Scholar

[10]

H. Y. Jian and Y. Li, Optimal boundary regularity for a singular Monge-Ampère equation, J. Differ. Equ., 264 (2018), 6873-6890.  doi: 10.1016/j.jde.2018.01.051.  Google Scholar

[11]

H. Y. Jian, Y. Li and X. S. Tu, On a class of degenerate and singular Monge-Ampère equations, arXiv: 1908.06396. Google Scholar

[12]

H. Y. Jian and X. J. Wang, Bernstein theorem and regularity for a class of Monge-Ampère equations, J. Differ. Geom., 93 (2013), 431-469.  doi: 10.4310/jdg/1361844941.  Google Scholar

[13]

H. Y. JianX. J. Wang and Y. W. Zhao, Global smoothness for a singular Monge-Ampère equation, J. Differ. Equ., 263 (2017), 7250-7262.  doi: 10.1016/j.jde.2017.08.004.  Google Scholar

[14]

N. Q. Le and O. Savin, Schauder estimates for degenerate Monge-Ampère equations and smoothness of the eigenfunctions, Invent. Math., 207 (2017), 389-423.  doi: 10.1007/s00222-016-0677-1.  Google Scholar

[15]

M. N. Li and Y. Li, Global regularity for a class of Monge-Ampère type equations, Sci. China Math., (2020), 16pp. doi: 10.1007/s11425-019-1691-1.  Google Scholar

[16]

C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in Contributions to Analysis, Academic Press, New York, (1974), 245-272.  Google Scholar

[17]

N. S. Trudinger and J. I. E. Urbas, The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Austral. Math. Soc., 28 (1983), 217-231.  doi: 10.1017/S000497270002089X.  Google Scholar

[18]

N. S. Trudinger and X. J. Wang, Boundary regularity for the Monge-Ampère and affine maximal surface equations, Ann. Math., 167 (2008), 993-1028.  doi: 10.4007/annals.2008.167.993.  Google Scholar

[19]

N. S. Trudinger and X. J. Wang, The Monge-Ampère equation and its geometric applications, in Handbook of Geometric Analysis, International Press, Somerville, MA, (2008), 467-524.  Google Scholar

[20]

J. I. E. Urbas, Global Hölder estimates for equations of Monge-Ampère type, Invent. Math., 91 (1988), 1-29.  doi: 10.1007/BF01404910.  Google Scholar

Figure 1.  The parameter $ a $
[1]

Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069

[2]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[3]

Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705

[4]

Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations & Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015

[5]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[6]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[7]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[8]

Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002

[9]

Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121

[10]

Shuyu Gong, Ziwei Zhou, Jiguang Bao. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4921-4936. doi: 10.3934/cpaa.2020218

[11]

Yahui Niu. Monotonicity of solutions for a class of nonlocal Monge-Ampère problem. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5269-5283. doi: 10.3934/cpaa.2020237

[12]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[13]

Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053

[14]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[15]

Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060

[16]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, 2021, 20 (2) : 915-931. doi: 10.3934/cpaa.2020297

[17]

Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

[18]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[19]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[20]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (305)
  • HTML views (64)
  • Cited by (0)

Other articles
by authors

[Back to Top]