• Previous Article
    Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound
  • CPAA Home
  • This Issue
  • Next Article
    Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions
January  2021, 20(1): 319-338. doi: 10.3934/cpaa.2020268

Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China

2. 

School of Mathematics and Information Sciences, Guangzhou University

3. 

Hua Loo-Keng Key Laboratory of Mathematics, Institute of Mathematics, AMSS, and School of Mathematical Sciences, UCAS, Beijing 100190, China

* Corresponding author

Received  January 2020 Revised  September 2020 Published  November 2020

Fund Project: The authors are supported partially by NSFC grant (No.11731001). The author Y. Wang is supported partially by NSFC grant (No.11971400) and Guangdong Basic and Applied Basic Research Foundation Grant (No. 2020A1515011019)

We follow the idea of Wang [21] to show the existence of global weak solutions to the Cauchy problems of Landau-Lifshtiz type equations and related heat flows from a $ n $-dimensional Euclidean domain $ \Omega $ or a $ n $-dimensional closed Riemannian manifold $ M $ into a 2-dimensional unit sphere $ \mathbb{S}^{2} $. Our conclusions extend a series of related results obtained in the previous literature.

Citation: Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268
References:
[1]

F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084.  doi: 10.1016/0362-546X(92)90196-L.  Google Scholar

[2]

L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, 54 (1996), 9353. Google Scholar

[3]

F. Bethuel, J. M. Coron, J. M. Ghidaglia and A. Soyeur, Nonlinear Diffusion Equations and Their Equilibrium States, 3, Gregynog, Birkhaüser, 1989. doi: 10.1007/978-1-4612-0393-3_7.  Google Scholar

[4]

G. Bonithon, Landau-Lifschitz-Gilbert equation with applied electric current, Discrete Contin. Dyn. Syst., (2007), 138-144.  Google Scholar

[5]

G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain, Differ. Integral Equ., 14 (2001), 213-229.   Google Scholar

[6]

G. Carbou and R. Jizzini, Very regular solutions for the Landau-Lifschitz equation with electric current, Chin. Ann. Math. Ser. B, 39 (2018), 889-916.  doi: 10.1007/s11401-018-0103-7.  Google Scholar

[7]

B. Chen and Y. D. Wang, Finite-time blow up for heat flow of self-induced harmonic maps, preprint. doi: 10.1512/iumj.2015.64.5499.  Google Scholar

[8]

Y. M. Chen, The weak solutions to the Evolution problems of harmonic maps, Math. Z., 201 (1989), 69-74.  doi: 10.1007/BF01161995.  Google Scholar

[9]

Y. M. ChenM. C. Hong and N. Hungerbühler, Heat flow of p-harmonic maps with values into sphere, Math. Z., 215 (1994), 25-35.  doi: 10.1007/BF02571698.  Google Scholar

[10]

W. Y. Ding and Y. D. Wang, Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A, 44 (2001), 1446-1464.  doi: 10.1007/BF02877074.  Google Scholar

[11]

T. L. Gilbert, A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., 100 (1955), 1243-1255.   Google Scholar

[12]

Z. L. Jia and Y. D. Wang, Global weak solutions to Landau-Lifshitz equations into compact Lie algebras, Front. Math. China, 14 (2019), 1163-1196.  doi: 10.1007/s11464-019-0803-7.  Google Scholar

[13]

H. KohnoG. TataraJ. Shibata and Y. Suzuki, Microscopic calculation of spin torques and forces, J. Magn. Magn. Mater., 310 (2006), 2020-2022.   Google Scholar

[14]

L. D. Landau and E. M. Lifshitz, On the theory of dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Soviet., 8 (1935), 153-169.   Google Scholar

[15]

F. H. Lin, Nonlinear theory of defexts in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789-814. doi: 10.1002/cpa.3160420605.  Google Scholar

[16]

J. Simon, Compact sets in the space $L^p([0, T];B)$, Ann. Mat. Pura. Appl., 4 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[17]

P. L. SulemC. Sulem and C. Bardos, On the continuous limit for a system of classical spins, Commun. Math. Phys., 107 (1986), 431-454.   Google Scholar

[18]

J. C. Slonczewski, Current-driven excitation of magnetic multilayer, J. Magn. Magn. Mater., 159 (1996), 635-642.   Google Scholar

[19]

M. Tilioua, Current-induced magnetization dynamics. Global existence of weak solutions, J. Math. Anal. Appl., 373 (2011), 635-642.  doi: 10.1016/j.jmaa.2010.08.024.  Google Scholar

[20]

A. Visintin, On Landau-Lifshitz' equations for ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84.  doi: 10.1007/BF03167039.  Google Scholar

[21]

Y. D. Wang, Heisenberg chain systems from compact manifolds into $ \mathbb{S}^2$, J. Math. Phy., 39 (1998), 363-371.  doi: 10.1063/1.532335.  Google Scholar

[22]

K. Wehrheim, Uhlenbeck Compactness, EMS Publishing House, USA, 2004. doi: 10.4171/004.  Google Scholar

[23]

Y. ZhouB. Guo and S. B. Tan, Existence and uniqueness of smooth solution for system of ferro-magnetic chain, Sci. China Ser. A, 34 (1991), 257-266.   Google Scholar

show all references

References:
[1]

F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084.  doi: 10.1016/0362-546X(92)90196-L.  Google Scholar

[2]

L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, 54 (1996), 9353. Google Scholar

[3]

F. Bethuel, J. M. Coron, J. M. Ghidaglia and A. Soyeur, Nonlinear Diffusion Equations and Their Equilibrium States, 3, Gregynog, Birkhaüser, 1989. doi: 10.1007/978-1-4612-0393-3_7.  Google Scholar

[4]

G. Bonithon, Landau-Lifschitz-Gilbert equation with applied electric current, Discrete Contin. Dyn. Syst., (2007), 138-144.  Google Scholar

[5]

G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain, Differ. Integral Equ., 14 (2001), 213-229.   Google Scholar

[6]

G. Carbou and R. Jizzini, Very regular solutions for the Landau-Lifschitz equation with electric current, Chin. Ann. Math. Ser. B, 39 (2018), 889-916.  doi: 10.1007/s11401-018-0103-7.  Google Scholar

[7]

B. Chen and Y. D. Wang, Finite-time blow up for heat flow of self-induced harmonic maps, preprint. doi: 10.1512/iumj.2015.64.5499.  Google Scholar

[8]

Y. M. Chen, The weak solutions to the Evolution problems of harmonic maps, Math. Z., 201 (1989), 69-74.  doi: 10.1007/BF01161995.  Google Scholar

[9]

Y. M. ChenM. C. Hong and N. Hungerbühler, Heat flow of p-harmonic maps with values into sphere, Math. Z., 215 (1994), 25-35.  doi: 10.1007/BF02571698.  Google Scholar

[10]

W. Y. Ding and Y. D. Wang, Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A, 44 (2001), 1446-1464.  doi: 10.1007/BF02877074.  Google Scholar

[11]

T. L. Gilbert, A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., 100 (1955), 1243-1255.   Google Scholar

[12]

Z. L. Jia and Y. D. Wang, Global weak solutions to Landau-Lifshitz equations into compact Lie algebras, Front. Math. China, 14 (2019), 1163-1196.  doi: 10.1007/s11464-019-0803-7.  Google Scholar

[13]

H. KohnoG. TataraJ. Shibata and Y. Suzuki, Microscopic calculation of spin torques and forces, J. Magn. Magn. Mater., 310 (2006), 2020-2022.   Google Scholar

[14]

L. D. Landau and E. M. Lifshitz, On the theory of dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Soviet., 8 (1935), 153-169.   Google Scholar

[15]

F. H. Lin, Nonlinear theory of defexts in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789-814. doi: 10.1002/cpa.3160420605.  Google Scholar

[16]

J. Simon, Compact sets in the space $L^p([0, T];B)$, Ann. Mat. Pura. Appl., 4 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[17]

P. L. SulemC. Sulem and C. Bardos, On the continuous limit for a system of classical spins, Commun. Math. Phys., 107 (1986), 431-454.   Google Scholar

[18]

J. C. Slonczewski, Current-driven excitation of magnetic multilayer, J. Magn. Magn. Mater., 159 (1996), 635-642.   Google Scholar

[19]

M. Tilioua, Current-induced magnetization dynamics. Global existence of weak solutions, J. Math. Anal. Appl., 373 (2011), 635-642.  doi: 10.1016/j.jmaa.2010.08.024.  Google Scholar

[20]

A. Visintin, On Landau-Lifshitz' equations for ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84.  doi: 10.1007/BF03167039.  Google Scholar

[21]

Y. D. Wang, Heisenberg chain systems from compact manifolds into $ \mathbb{S}^2$, J. Math. Phy., 39 (1998), 363-371.  doi: 10.1063/1.532335.  Google Scholar

[22]

K. Wehrheim, Uhlenbeck Compactness, EMS Publishing House, USA, 2004. doi: 10.4171/004.  Google Scholar

[23]

Y. ZhouB. Guo and S. B. Tan, Existence and uniqueness of smooth solution for system of ferro-magnetic chain, Sci. China Ser. A, 34 (1991), 257-266.   Google Scholar

[1]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[4]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[5]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[6]

Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166

[7]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[8]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[9]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[10]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[11]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[12]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[13]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[14]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[15]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[16]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[17]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[18]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[19]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[20]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (49)
  • HTML views (39)
  • Cited by (0)

Other articles
by authors

[Back to Top]