January  2021, 20(1): 359-368. doi: 10.3934/cpaa.2020270

Isomorphism between one-dimensional and multidimensional finite difference operators

Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia

Received  July 2020 Revised  September 2020 Published  January 2021 Early access  November 2020

Fund Project: This paper is a contribution to the project M3 of the Collaborative Research Centre TRR 181 "Energy Transfer in Atmosphere and Ocean" funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer 274762653. This work is also supported by the RFBR (RFFI) grant No. 19-01-00094

Finite difference operators are widely used for the approximation of continuous ones. It is well known that the analysis of continuous differential operators may strongly depend on their dimensions. We will show that the finite difference operators generate the same algebra, regardless of their dimension.

Citation: Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270
References:
[1]

V. V. Bavula, The algebra of integro-differential operators on an affine line and its modules, J. Pure Appl. Algebra, 217 (2013), 495-529.  doi: 10.1016/j.jpaa.2012.06.024.  Google Scholar

[2]

K. Davidson, C*-Algebras by Example, American Mathematical Society and Fields Institute, 1997. doi: 10.1090/fim/006.  Google Scholar

[3]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Mathematical Society, Providence, Rhode Island, 2010. Google Scholar

[4]

J. G. Glimm, On a certain class of operator algebras, Trans. Am. Math. Soc., 95 (1960), 318-340.  doi: 10.2307/1993294.  Google Scholar

[5]

L. Guo and W. Keigher, On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212 (2008), 522-540.  doi: 10.1016/j.jpaa.2007.06.008.  Google Scholar

[6]

L. GuoG. Regensburger and M. Rosenkranz, On integro-differential algebras, J. Pure Appl. Algebra, 218 (2014), 456-473.  doi: 10.1016/j.jpaa.2013.06.015.  Google Scholar

[7]

R. Hoegh-Krohn and T. Skjelbred, Classification of C*-algebras admitting ergodic actions of the two-dimensional torus, J. Reine Angew. Math., 328 (1981), 1-8.  doi: 10.1515/crll.1981.328.1.  Google Scholar

[8] M. RordamF. Larsen and N. J. Laustsen, An Introduction to K-Theory for C*-Algebras, Cambridge University Press, 2000.   Google Scholar
[9]

M. Rosenkranz, A new symbolic method for solving linear two-point boundary value problems on the level of operators, J. Symb. Comput, 39 (2005), 171-199.  doi: 10.1016/j.jsc.2004.09.004.  Google Scholar

[10]

M. Tenenbaum and H. Pollard, Ordinary Differential Equations, Dover Publications Inc., 2012. Google Scholar

[11]

H. S. Yin, A simple proof of the classification of rational rotation C*-algebras, P. Am. Math. Soc., 98 (1986), 469-470.  doi: 10.2307/2046204.  Google Scholar

show all references

References:
[1]

V. V. Bavula, The algebra of integro-differential operators on an affine line and its modules, J. Pure Appl. Algebra, 217 (2013), 495-529.  doi: 10.1016/j.jpaa.2012.06.024.  Google Scholar

[2]

K. Davidson, C*-Algebras by Example, American Mathematical Society and Fields Institute, 1997. doi: 10.1090/fim/006.  Google Scholar

[3]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Mathematical Society, Providence, Rhode Island, 2010. Google Scholar

[4]

J. G. Glimm, On a certain class of operator algebras, Trans. Am. Math. Soc., 95 (1960), 318-340.  doi: 10.2307/1993294.  Google Scholar

[5]

L. Guo and W. Keigher, On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212 (2008), 522-540.  doi: 10.1016/j.jpaa.2007.06.008.  Google Scholar

[6]

L. GuoG. Regensburger and M. Rosenkranz, On integro-differential algebras, J. Pure Appl. Algebra, 218 (2014), 456-473.  doi: 10.1016/j.jpaa.2013.06.015.  Google Scholar

[7]

R. Hoegh-Krohn and T. Skjelbred, Classification of C*-algebras admitting ergodic actions of the two-dimensional torus, J. Reine Angew. Math., 328 (1981), 1-8.  doi: 10.1515/crll.1981.328.1.  Google Scholar

[8] M. RordamF. Larsen and N. J. Laustsen, An Introduction to K-Theory for C*-Algebras, Cambridge University Press, 2000.   Google Scholar
[9]

M. Rosenkranz, A new symbolic method for solving linear two-point boundary value problems on the level of operators, J. Symb. Comput, 39 (2005), 171-199.  doi: 10.1016/j.jsc.2004.09.004.  Google Scholar

[10]

M. Tenenbaum and H. Pollard, Ordinary Differential Equations, Dover Publications Inc., 2012. Google Scholar

[11]

H. S. Yin, A simple proof of the classification of rational rotation C*-algebras, P. Am. Math. Soc., 98 (1986), 469-470.  doi: 10.2307/2046204.  Google Scholar

$ {\mathcal U}_{2,1} $">Figure 1.  Two first partitions for the unitary transform $ {\mathcal U}_{2,1}^{-1} $ between $ L^2_{2,1} $ and $ L^2_{1,1} $ are shown. The characteristic functions of squares and intervals with the same "blue" and "red" numbers are transformed into each other under the action of $ {\mathcal U}_{2,1} $
Fig. 1, applied to the function $ z(x,y) = 1+\sin(\pi(x^2+y^2)) $">Figure 2.  The unitary transform $ {\mathcal U}_{2,1}^{-1} $, see Fig. 1, applied to the function $ z(x,y) = 1+\sin(\pi(x^2+y^2)) $
[1]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014

[2]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[3]

María José Beltrán, José Bonet, Carmen Fernández. Classical operators on the Hörmander algebras. Discrete & Continuous Dynamical Systems, 2015, 35 (2) : 637-652. doi: 10.3934/dcds.2015.35.637

[4]

Bernd Ammann, Robert Lauter and Victor Nistor. Algebras of pseudodifferential operators on complete manifolds. Electronic Research Announcements, 2003, 9: 80-87.

[5]

Adam Bobrowski, Katarzyna Morawska. From a PDE model to an ODE model of dynamics of synaptic depression. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2313-2327. doi: 10.3934/dcdsb.2012.17.2313

[6]

Sabine Eisenhofer, Messoud A. Efendiev, Mitsuharu Ôtani, Sabine Schulz, Hans Zischka. On an ODE-PDE coupling model of the mitochondrial swelling process. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1031-1057. doi: 10.3934/dcdsb.2015.20.1031

[7]

Vanessa Baumgärtner, Simone Göttlich, Stephan Knapp. Feedback stabilization for a coupled PDE-ODE production system. Mathematical Control & Related Fields, 2020, 10 (2) : 405-424. doi: 10.3934/mcrf.2020003

[8]

Cristian Dobre. Mathematical properties of the regular *-representation of matrix $*$-algebras with applications to semidefinite programming. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 367-378. doi: 10.3934/naco.2013.3.367

[9]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[10]

Chady Ghnatios, Guangtao Xu, Adrien Leygue, Michel Visonneau, Francisco Chinesta, Alain Cimetiere. On the space separated representation when addressing the solution of PDE in complex domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 475-500. doi: 10.3934/dcdss.2016008

[11]

Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286-293. doi: 10.3934/proc.2007.2007.286

[12]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[13]

Pavel Krejčí, Harbir Lamba, Sergey Melnik, Dmitrii Rachinskii. Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2949-2965. doi: 10.3934/dcdsb.2015.20.2949

[14]

Youshan Tao, J. Ignacio Tello. Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 193-207. doi: 10.3934/mbe.2016.13.193

[15]

Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks & Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501

[16]

Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435

[17]

Matthias Gerdts, Sven-Joachim Kimmerle. Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin. Conference Publications, 2015, 2015 (special) : 515-524. doi: 10.3934/proc.2015.0515

[18]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[19]

Catarina Carvalho, Victor Nistor, Yu Qiao. Fredholm criteria for pseudodifferential operators and induced representations of groupoid algebras. Electronic Research Announcements, 2017, 24: 68-77. doi: 10.3934/era.2017.24.008

[20]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (87)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]