January  2021, 20(1): 369-388. doi: 10.3934/cpaa.2020271

On optimal autocorrelation inequalities on the real line

1. 

Department of Mathematics, University of California, Los Angeles, Portola Plaza 520, Los Angeles, California, 90095, USA

2. 

Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro, RJ, 22460-320, Brazil

*Corresponding author

Received  August 2020 Revised  September 2020 Published  January 2021 Early access  November 2020

We study autocorrelation inequalities, in the spirit of Barnard and Steinerberger's work [1]. In particular, we obtain improvements on the sharp constants in some of the inequalities previously considered by these authors, and also prove existence of extremizers to these inequalities in certain specific settings. Our methods consist of relating the inequalities in question to other classical sharp inequalities in Fourier analysis, such as the sharp Hausdorff–Young inequality, and employing functional analysis as well as measure theory tools in connection to a suitable dual version of the problem to identify and impose conditions on extremizers.

Citation: José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271
References:
[1]

R.C. Barnard and S. Steinerberger, Three convolution inequalities on the real line with connection to additive combinatorics, J. Number Theory, 207 (2020), 42-55.  doi: 10.1016/j.jnt.2019.07.001.  Google Scholar

[2]

W. Beckner, Inequalities in Fourier analysis, Ann. Math., 102 (1975), 159-182.  doi: 10.2307/1970980.  Google Scholar

[3]

J. BourgainL. Clozel and J.P. Kahane, Principe d'Heisenberg et fonctions positives, Annales de l'institut Fourier, 60 (2010), 1215-1232.   Google Scholar

[4]

J. CillerueloI. Ruzsa and C. Trujillo, Upper and lower bounds for finite $Bh[g]$ sequences, J. Number Theory, 97 (2002), 26-34.  doi: 10.1006/jnth.2001.2767.  Google Scholar

[5]

J. Cilleruelo, I. Ruzsa and C. Vinuesa, Generalized Sidon sets, Adv. Math., 225 (2010), 2786 –2807. doi: 10.1016/j.aim.2010.05.010.  Google Scholar

[6]

A. Cloninger and S. Steinerberger, On suprema of autoconvolutions with an application to Sidon sets, P. Am. Math. Soc., 145 (2017), 3191-3200.  doi: 10.1090/proc/13690.  Google Scholar

[7]

H. Cohn and F. Gonçalves, An optimal uncertainty principle in twelve dimensions via modular forms, Inventionnes Mathematicae, 217 (2019), 799-831.  doi: 10.1007/s00222-019-00875-4.  Google Scholar

[8]

S. Fish, D. King and S. J. Miller, Extensions of Autocorrelation Inequalities with Applications to Additive Combinatorics, arXiv: 2001.02326. Google Scholar

[9] G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 2016.   Google Scholar
[10]

F. Gonçalves, D. Oliveira e Silva and J. P. G. Ramos, New sign uncertainty principles, Preprint, 2020. Google Scholar

[11]

F. Gonçalves, D. Oliveira e Silva and J. P. G. Ramos, On regularity and mass concentration phenomena for the sign uncertainty principle, Preprint, 2020. Google Scholar

[12]

F. GonçalvesD. Oliveira e Silva and S. Steinerberger, Hermite polynomials, linear flows on the torus, and an uncertainty principle for roots, J. Math. Anal. Appl., 451 (2017), 678-711.  doi: 10.1016/j.jmaa.2017.02.030.  Google Scholar

[13]

B. Green, The number of squares and $Bh[g]$ sets, Acta Arith., 100 (2001), 365-390.  doi: 10.4064/aa100-4-6.  Google Scholar

[14]

G. Martin and K. O'Bryant, Constructions of generalized Sidon sets, J. Comb. Theory A, 113 (2006), 591-607.  doi: 10.1016/j.jcta.2005.04.011.  Google Scholar

[15]

G. Martin and K. O'Bryant, The symmetric subset problem in continuous Ramsey theory, Exp. Math., 16 (2007), 145-166.   Google Scholar

[16]

M. Matolcsi and C. Vinuesa, Improved bounds on the supremum of autoconvolutions, J. Math. Anal. Appl., 372 (2010), 439-447.  doi: 10.1016/j.jmaa.2010.07.030.  Google Scholar

[17]

G. Yu, An upper bound for $B2[g]$ sets, J. Number Theory, 122 (2007), 211-220.  doi: 10.1016/j.jnt.2006.04.008.  Google Scholar

show all references

References:
[1]

R.C. Barnard and S. Steinerberger, Three convolution inequalities on the real line with connection to additive combinatorics, J. Number Theory, 207 (2020), 42-55.  doi: 10.1016/j.jnt.2019.07.001.  Google Scholar

[2]

W. Beckner, Inequalities in Fourier analysis, Ann. Math., 102 (1975), 159-182.  doi: 10.2307/1970980.  Google Scholar

[3]

J. BourgainL. Clozel and J.P. Kahane, Principe d'Heisenberg et fonctions positives, Annales de l'institut Fourier, 60 (2010), 1215-1232.   Google Scholar

[4]

J. CillerueloI. Ruzsa and C. Trujillo, Upper and lower bounds for finite $Bh[g]$ sequences, J. Number Theory, 97 (2002), 26-34.  doi: 10.1006/jnth.2001.2767.  Google Scholar

[5]

J. Cilleruelo, I. Ruzsa and C. Vinuesa, Generalized Sidon sets, Adv. Math., 225 (2010), 2786 –2807. doi: 10.1016/j.aim.2010.05.010.  Google Scholar

[6]

A. Cloninger and S. Steinerberger, On suprema of autoconvolutions with an application to Sidon sets, P. Am. Math. Soc., 145 (2017), 3191-3200.  doi: 10.1090/proc/13690.  Google Scholar

[7]

H. Cohn and F. Gonçalves, An optimal uncertainty principle in twelve dimensions via modular forms, Inventionnes Mathematicae, 217 (2019), 799-831.  doi: 10.1007/s00222-019-00875-4.  Google Scholar

[8]

S. Fish, D. King and S. J. Miller, Extensions of Autocorrelation Inequalities with Applications to Additive Combinatorics, arXiv: 2001.02326. Google Scholar

[9] G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 2016.   Google Scholar
[10]

F. Gonçalves, D. Oliveira e Silva and J. P. G. Ramos, New sign uncertainty principles, Preprint, 2020. Google Scholar

[11]

F. Gonçalves, D. Oliveira e Silva and J. P. G. Ramos, On regularity and mass concentration phenomena for the sign uncertainty principle, Preprint, 2020. Google Scholar

[12]

F. GonçalvesD. Oliveira e Silva and S. Steinerberger, Hermite polynomials, linear flows on the torus, and an uncertainty principle for roots, J. Math. Anal. Appl., 451 (2017), 678-711.  doi: 10.1016/j.jmaa.2017.02.030.  Google Scholar

[13]

B. Green, The number of squares and $Bh[g]$ sets, Acta Arith., 100 (2001), 365-390.  doi: 10.4064/aa100-4-6.  Google Scholar

[14]

G. Martin and K. O'Bryant, Constructions of generalized Sidon sets, J. Comb. Theory A, 113 (2006), 591-607.  doi: 10.1016/j.jcta.2005.04.011.  Google Scholar

[15]

G. Martin and K. O'Bryant, The symmetric subset problem in continuous Ramsey theory, Exp. Math., 16 (2007), 145-166.   Google Scholar

[16]

M. Matolcsi and C. Vinuesa, Improved bounds on the supremum of autoconvolutions, J. Math. Anal. Appl., 372 (2010), 439-447.  doi: 10.1016/j.jmaa.2010.07.030.  Google Scholar

[17]

G. Yu, An upper bound for $B2[g]$ sets, J. Number Theory, 122 (2007), 211-220.  doi: 10.1016/j.jnt.2006.04.008.  Google Scholar

[1]

YanYan Li, Tonia Ricciardi. A sharp Sobolev inequality on Riemannian manifolds. Communications on Pure & Applied Analysis, 2003, 2 (1) : 1-31. doi: 10.3934/cpaa.2003.2.1

[2]

Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621

[3]

Naoki Hamamoto, Futoshi Takahashi. Sharp Hardy-Leray inequality for three-dimensional solenoidal fields with axisymmetric swirl. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3209-3222. doi: 10.3934/cpaa.2020139

[4]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[5]

Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015

[6]

Pinhui Ke, Yueqin Jiang, Zhixiong Chen. On the linear complexities of two classes of quaternary sequences of even length with optimal autocorrelation. Advances in Mathematics of Communications, 2018, 12 (3) : 525-539. doi: 10.3934/amc.2018031

[7]

Oǧuz Yayla. Nearly perfect sequences with arbitrary out-of-phase autocorrelation. Advances in Mathematics of Communications, 2016, 10 (2) : 401-411. doi: 10.3934/amc.2016014

[8]

Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100

[9]

Pinhui Ke, Panpan Qiao, Yang Yang. On the equivalence of several classes of quaternary sequences with optimal autocorrelation and length $ 2p$. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020112

[10]

Samuel T. Blake, Thomas E. Hall, Andrew Z. Tirkel. Arrays over roots of unity with perfect autocorrelation and good ZCZ cross-correlation. Advances in Mathematics of Communications, 2013, 7 (3) : 231-242. doi: 10.3934/amc.2013.7.231

[11]

Lin Yi, Xiangyong Zeng, Zhimin Sun, Shasha Zhang. On the linear complexity and autocorrelation of generalized cyclotomic binary sequences with period $ 4p^n $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021019

[12]

Jorge A. Becerril, Javier F. Rosenblueth. Necessity for isoperimetric inequality constraints. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1129-1158. doi: 10.3934/dcds.2017047

[13]

Gisella Croce, Bernard Dacorogna. On a generalized Wirtinger inequality. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1329-1341. doi: 10.3934/dcds.2003.9.1329

[14]

Simone Fiori. Auto-regressive moving-average discrete-time dynamical systems and autocorrelation functions on real-valued Riemannian matrix manifolds. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2785-2808. doi: 10.3934/dcdsb.2014.19.2785

[15]

Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119

[16]

Hubert L. Bray, Marcus A. Khuri. A Jang equation approach to the Penrose inequality. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 741-766. doi: 10.3934/dcds.2010.27.741

[17]

S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279

[18]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[19]

Alexei Shadrin. The Landau--Kolmogorov inequality revisited. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1183-1210. doi: 10.3934/dcds.2014.34.1183

[20]

Alain Haraux. Some applications of the Łojasiewicz gradient inequality. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2417-2427. doi: 10.3934/cpaa.2012.11.2417

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (117)
  • HTML views (43)
  • Cited by (0)

Other articles
by authors

[Back to Top]