We study autocorrelation inequalities, in the spirit of Barnard and Steinerberger's work [
Citation: |
[1] |
R.C. Barnard and S. Steinerberger, Three convolution inequalities on the real line with connection to additive combinatorics, J. Number Theory, 207 (2020), 42-55.
doi: 10.1016/j.jnt.2019.07.001.![]() ![]() ![]() |
[2] |
W. Beckner, Inequalities in Fourier analysis, Ann. Math., 102 (1975), 159-182.
doi: 10.2307/1970980.![]() ![]() ![]() |
[3] |
J. Bourgain, L. Clozel and J.P. Kahane, Principe d'Heisenberg et fonctions positives, Annales de l'institut Fourier, 60 (2010), 1215-1232.
![]() |
[4] |
J. Cilleruelo, I. Ruzsa and C. Trujillo, Upper and lower bounds for finite $Bh[g]$ sequences, J. Number Theory, 97 (2002), 26-34.
doi: 10.1006/jnth.2001.2767.![]() ![]() ![]() |
[5] |
J. Cilleruelo, I. Ruzsa and C. Vinuesa, Generalized Sidon sets, Adv. Math., 225 (2010), 2786 –2807.
doi: 10.1016/j.aim.2010.05.010.![]() ![]() ![]() |
[6] |
A. Cloninger and S. Steinerberger, On suprema of autoconvolutions with an application to Sidon sets, P. Am. Math. Soc., 145 (2017), 3191-3200.
doi: 10.1090/proc/13690.![]() ![]() ![]() |
[7] |
H. Cohn and F. Gonçalves, An optimal uncertainty principle in twelve dimensions via modular forms, Inventionnes Mathematicae, 217 (2019), 799-831.
doi: 10.1007/s00222-019-00875-4.![]() ![]() ![]() |
[8] |
S. Fish, D. King and S. J. Miller, Extensions of Autocorrelation Inequalities with Applications to Additive Combinatorics, arXiv: 2001.02326.
![]() |
[9] |
G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 2016.
![]() ![]() |
[10] |
F. Gonçalves, D. Oliveira e Silva and J. P. G. Ramos, New sign uncertainty principles, Preprint, 2020.
![]() |
[11] |
F. Gonçalves, D. Oliveira e Silva and J. P. G. Ramos, On regularity and mass concentration phenomena for the sign uncertainty principle, Preprint, 2020.
![]() |
[12] |
F. Gonçalves, D. Oliveira e Silva and S. Steinerberger, Hermite polynomials, linear flows on the torus, and an uncertainty principle for roots, J. Math. Anal. Appl., 451 (2017), 678-711.
doi: 10.1016/j.jmaa.2017.02.030.![]() ![]() ![]() |
[13] |
B. Green, The number of squares and $Bh[g]$ sets, Acta Arith., 100 (2001), 365-390.
doi: 10.4064/aa100-4-6.![]() ![]() ![]() |
[14] |
G. Martin and K. O'Bryant, Constructions of generalized Sidon sets, J. Comb. Theory A, 113 (2006), 591-607.
doi: 10.1016/j.jcta.2005.04.011.![]() ![]() ![]() |
[15] |
G. Martin and K. O'Bryant, The symmetric subset problem in continuous Ramsey theory, Exp. Math., 16 (2007), 145-166.
![]() ![]() |
[16] |
M. Matolcsi and C. Vinuesa, Improved bounds on the supremum of autoconvolutions, J. Math. Anal. Appl., 372 (2010), 439-447.
doi: 10.1016/j.jmaa.2010.07.030.![]() ![]() ![]() |
[17] |
G. Yu, An upper bound for $B2[g]$ sets, J. Number Theory, 122 (2007), 211-220.
doi: 10.1016/j.jnt.2006.04.008.![]() ![]() ![]() |