doi: 10.3934/cpaa.2020272

Multiple solutions for nonlinear cone degenerate elliptic equations

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China

* Corresponding author

Dedicated to the 80th birthday of Professor Shuxing Chen

Received  May 2020 Revised  September 2020 Published  November 2020

Fund Project: This work is supported by the NSFC under the grands 11771218, 11371282, 11631011 and supported by the Fundamental Research Funds for the Central Universities

The present paper is concerned with the Dirichlet boundary value problem for nonlinear cone degenerate elliptic equations. First we introduce the weighted Sobolev spaces, inequalities and the property of compactness. After the appropriate energy functional established, we obtain the existence of infinitely many solutions in the weighted Sobolev spaces by applying the variational methods.

Citation: Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020272
References:
[1]

R. P. AgarwalM. B. Ghaemi and S. Saiedinezhad, The Nehari manifold for the degenerate p-Laplacian quasilinear elliptic equations, Adv. Math. Sci. Appl., 20 (2010), 37-50.   Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

D. CaoS. Peng and S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Func. Anal., 262 (2012), 2861-2902.  doi: 10.1016/j.jfa.2012.01.006.  Google Scholar

[4]

S. Carl and D. Motreanu, Multiple and sign-changing solutions for the multivalued p-Laplacian equation, Math. Nachr., 283 (2010), 965-981.  doi: 10.1002/mana.200710049.  Google Scholar

[5]

A. Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian and p-biharmonic operators, Opuscula Math., 33 (2013), 439-453. doi: 10.7494/OpMath.2013.33.3.439.  Google Scholar

[6]

A. Cavalheiro, Existence and Uniqueness of Solutions for Dirichlet Problems with Degenerate Nonlinear Elliptic Operators, Differ. Equ. Dyn. Syst., 24 (2016), 305-317. doi: 10.1007/s12591-014-0214-x.  Google Scholar

[7]

H. ChenX. Liu and Y. Wei, Existence Theorem for a class of Semi-linear totally Characteristic Elliptic Equations with Critical Cone Sobolev Exponents, Ann. Glob. Anal. Geom., 39 (2011), 27-43.  doi: 10.1007/s10455-010-9226-0.  Google Scholar

[8]

H. ChenX. Liu and Y. Wei, Cone Sobolev Inequality and Dirichlet problems for Nonlinear Elliptic Equations on Manifold with Conical Singularities, Calc. Var. PDEs, 43 (2012), 463-484.  doi: 10.1007/s00526-011-0418-7.  Google Scholar

[9]

H. ChenX. Liu and Y. Wei, Multiple Solutions for Semilinear totally Characteristic Elliptic Equations with Subcritical or Critical Cone Sobolev Exponents, J. Differ. Equ., 252 (2012), 4200-4228.  doi: 10.1016/j.jde.2011.12.009.  Google Scholar

[10]

H. ChenY. Wei and B. Zhou, Existence of Solutions for Degenerate Elliptic Equations with Singular Potential on Conical Singular Manifolds, Math. Nachr., 285 (2012), 1370-1384.  doi: 10.1002/mana.201100088.  Google Scholar

[11]

S. CoriascoE. Schrohe and J. Seiler, Realizations of differential operators on conic manifolds with boundary, Ann. Glob. Anal. Geom., 31 (2007), 223-285.  doi: 10.1007/s10455-006-9019-7.  Google Scholar

[12]

P. Drabek, Resonance Problems for the p -Laplacian, J Funct. Anal., 169 (1999), 189-200.  doi: 10.1006/jfan.1999.3501.  Google Scholar

[13]

Ju. V. Egorov and B. W. Schulze, Pseudo-differential operators, singularities, applications, Operator Theory, Advances and Applications 93, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8900-1.  Google Scholar

[14] D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, 1969.   Google Scholar
[15]

J. Garcia Azorero and I. Peral Alonso, Existence and nonuniqueness for the $p$-Laplacian: Nonlinear Eigenvalues, Commun. in PDE, 12 (1987), 1389-1430.  doi: 10.1080/03605308708820534.  Google Scholar

[16]

Y. Jing and Z. Liu, Infinitely many solutions of p-sublinear p-Laplacian equations, J. Math. Anal. Appl., 429 (2015), 1240-1257.  doi: 10.1016/j.jmaa.2015.04.069.  Google Scholar

[17]

R. B. Melrose and G. A. Mendoza, Elliptic operators of totally characteristic type, Math. Sci. Res., (1983), 29 pp. Google Scholar

[18]

P. H. Rabinowitz, Some Aspects of Nonlinear Eigenvalue Problems, Rocky Mt. J. Math., 2 (1973), 161-192.  doi: 10.1216/RMJ-1973-3-2-161.  Google Scholar

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces, Integr. Equat. Oper. Th., (2001), 93–114. doi: 10.1007/BF01202533.  Google Scholar

[20]

B. W. Schulze, Boundary value problems and singular pseudo-differential operators, Pure Appl. Math., (1999).  Google Scholar

[21]

H. Yamabe, On the deformations of Riemannian structures on compact manifolds, Osaka Math. J., (1960), 21–37.  Google Scholar

show all references

References:
[1]

R. P. AgarwalM. B. Ghaemi and S. Saiedinezhad, The Nehari manifold for the degenerate p-Laplacian quasilinear elliptic equations, Adv. Math. Sci. Appl., 20 (2010), 37-50.   Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

D. CaoS. Peng and S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Func. Anal., 262 (2012), 2861-2902.  doi: 10.1016/j.jfa.2012.01.006.  Google Scholar

[4]

S. Carl and D. Motreanu, Multiple and sign-changing solutions for the multivalued p-Laplacian equation, Math. Nachr., 283 (2010), 965-981.  doi: 10.1002/mana.200710049.  Google Scholar

[5]

A. Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian and p-biharmonic operators, Opuscula Math., 33 (2013), 439-453. doi: 10.7494/OpMath.2013.33.3.439.  Google Scholar

[6]

A. Cavalheiro, Existence and Uniqueness of Solutions for Dirichlet Problems with Degenerate Nonlinear Elliptic Operators, Differ. Equ. Dyn. Syst., 24 (2016), 305-317. doi: 10.1007/s12591-014-0214-x.  Google Scholar

[7]

H. ChenX. Liu and Y. Wei, Existence Theorem for a class of Semi-linear totally Characteristic Elliptic Equations with Critical Cone Sobolev Exponents, Ann. Glob. Anal. Geom., 39 (2011), 27-43.  doi: 10.1007/s10455-010-9226-0.  Google Scholar

[8]

H. ChenX. Liu and Y. Wei, Cone Sobolev Inequality and Dirichlet problems for Nonlinear Elliptic Equations on Manifold with Conical Singularities, Calc. Var. PDEs, 43 (2012), 463-484.  doi: 10.1007/s00526-011-0418-7.  Google Scholar

[9]

H. ChenX. Liu and Y. Wei, Multiple Solutions for Semilinear totally Characteristic Elliptic Equations with Subcritical or Critical Cone Sobolev Exponents, J. Differ. Equ., 252 (2012), 4200-4228.  doi: 10.1016/j.jde.2011.12.009.  Google Scholar

[10]

H. ChenY. Wei and B. Zhou, Existence of Solutions for Degenerate Elliptic Equations with Singular Potential on Conical Singular Manifolds, Math. Nachr., 285 (2012), 1370-1384.  doi: 10.1002/mana.201100088.  Google Scholar

[11]

S. CoriascoE. Schrohe and J. Seiler, Realizations of differential operators on conic manifolds with boundary, Ann. Glob. Anal. Geom., 31 (2007), 223-285.  doi: 10.1007/s10455-006-9019-7.  Google Scholar

[12]

P. Drabek, Resonance Problems for the p -Laplacian, J Funct. Anal., 169 (1999), 189-200.  doi: 10.1006/jfan.1999.3501.  Google Scholar

[13]

Ju. V. Egorov and B. W. Schulze, Pseudo-differential operators, singularities, applications, Operator Theory, Advances and Applications 93, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8900-1.  Google Scholar

[14] D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, 1969.   Google Scholar
[15]

J. Garcia Azorero and I. Peral Alonso, Existence and nonuniqueness for the $p$-Laplacian: Nonlinear Eigenvalues, Commun. in PDE, 12 (1987), 1389-1430.  doi: 10.1080/03605308708820534.  Google Scholar

[16]

Y. Jing and Z. Liu, Infinitely many solutions of p-sublinear p-Laplacian equations, J. Math. Anal. Appl., 429 (2015), 1240-1257.  doi: 10.1016/j.jmaa.2015.04.069.  Google Scholar

[17]

R. B. Melrose and G. A. Mendoza, Elliptic operators of totally characteristic type, Math. Sci. Res., (1983), 29 pp. Google Scholar

[18]

P. H. Rabinowitz, Some Aspects of Nonlinear Eigenvalue Problems, Rocky Mt. J. Math., 2 (1973), 161-192.  doi: 10.1216/RMJ-1973-3-2-161.  Google Scholar

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces, Integr. Equat. Oper. Th., (2001), 93–114. doi: 10.1007/BF01202533.  Google Scholar

[20]

B. W. Schulze, Boundary value problems and singular pseudo-differential operators, Pure Appl. Math., (1999).  Google Scholar

[21]

H. Yamabe, On the deformations of Riemannian structures on compact manifolds, Osaka Math. J., (1960), 21–37.  Google Scholar

[1]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[2]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[3]

Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014

[4]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[5]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[6]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[7]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[8]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[9]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[10]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[11]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[12]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[13]

Jintai Ding, Zheng Zhang, Joshua Deaton. The singularity attack to the multivariate signature scheme HIMQ-3. Advances in Mathematics of Communications, 2021, 15 (1) : 65-72. doi: 10.3934/amc.2020043

[14]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[15]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[16]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[17]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[18]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[19]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[20]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (74)
  • HTML views (87)
  • Cited by (0)

Other articles
by authors

[Back to Top]