\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials

  • * Corresponding author

    * Corresponding author 

The first two authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)

Abstract Full Text(HTML) Related Papers Cited by
  • The main results in the paper are the weighted multipolar Hardy inequalities

    $ \begin{equation*} c\int_{\mathbb{R}^N}\sum\limits_{i = 1}^n\frac{\varphi^2}{|x-a_i|^2}\,\mu(x)dx \leq\int_{\mathbb{R}^N}|\nabla \varphi |^2\mu(x)dx+ K\int_{\mathbb{R}^N} \varphi^2\mu(x)dx, \end{equation*} $

    in $ \mathbb{R}^N $ for any $ \varphi $ in a suitable weighted Sobolev space, with $ 0<c\le c_{o,\mu} $, $ a_1,\dots,a_n\in \mathbb{R}^N $, $ K $ constant. The weight functions $ \mu $ are of a quite general type.

    The paper fits in the framework of Kolmogorov operators defined on smooth functions

    $ \begin{equation*} Lu = \Delta u+\frac{\nabla \mu}{\mu}\cdot\nabla u, \end{equation*} $

    perturbed by multipolar inverse square potentials, and related evolution problems. Necessary and sufficient conditions for the existence of exponentially bounded in time positive solutions to the associated initial value problem are based on weighted Hardy inequalities. For constants $ c $ beyond the optimal Hardy constant $ c_{o,\mu} $ we are able to show nonexistence of positive solutions.

    Mathematics Subject Classification: Primary: 35K15, 35K65, 35B25; Secondary: 34G10, 47D03.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. AlbaneseL. Lorenzi and E. Mangino, $L^p$–uniqueness for elliptic operators with unbounded coefficients in $\mathbb{R} ^N$, J. Funct. Anal., 256 (2009), 1238-1257.  doi: 10.1016/j.jfa.2008.07.022.
    [2] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Sc. Norm. Super. Pisa, 22 (1968), 607-694. 
    [3] P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Am. Math. Soc., 284 (1984), 121-139.  doi: 10.2307/1999277.
    [4] R. BosiJ. Dolbeault and M. J. Esteban, Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators, Commun. Pure Appl. Anal., 7 (2008), 533-562.  doi: 10.3934/cpaa.2008.7.533.
    [5] X. Cabré and Y. Martel, Existence versus explosion instantanée pour des e$\acute{\rm{q}}$uations de la chaleur lineáires avec potentiel singulier, C. R. Acad. Sci. Paris, 329 (1999), 973-978.  doi: 10.1016/S0764-4442(00)88588-2.
    [6] A. CanaleF. GregorioA. Rhandi and C. Tacelli, Weighted Hardy's inequalities and Kolmogorov-type operators, Appl. Anal., 98 (2019), 1236-1254.  doi: 10.1080/00036811.2017.1419200.
    [7] A. CanaleR. M. Mininni and A. Rhandi, Analytic approach to solve a degenerate parabolic PDE for the Heston model, Math. Meth. Appl. Sci., 40 (2017), 4982-4992.  doi: 10.1002/mma.4363.
    [8] A. Canale and F. Pappalardo, Weighted Hardy inequalities and Ornstein-Uhlenbeck type operators perturbed by multipolar inverse square potentials, J. Math. Anal. Appl., 463 (2018), 895-909.  doi: 10.1016/j.jmaa.2018.03.059.
    [9] A. CanaleF. Pappalardo and C. Tarantino, A class of weighted Hardy inequalities and applications to evolution problems, Ann. Mat. Pura Appl., 199 (2020), 1171-1181.  doi: 10.1007/s10231-019-00916-y.
    [10] A. CanaleA. Rhandi and C. Tacelli, Schrödinger type operators with unbounded diffusion and potential terms, Ann. Sc. Norm. Super. Pisa Cl. Sci., XVI (2016), 581-601.  doi: 10.2422/2036-2145.201409_007.
    [11] A. CanaleA. Rhandi and C. Tacelli, Kernel estimates for Schrödinger type operators with unbounded diffusion and potential terms, Z. Anal. Anwend., 36 (2017), 377-392.  doi: 10.4171/ZAA/1593.
    [12] A. Canale and C. Tacelli, Kernel estimates for a Schrödinger type operator, Riv. Mat. Univ. Parma, 7 (2016), 341-350. 
    [13] C. Cazacu, New estimates for the Hardy constants of multipolar Schrödinger operators, Commun. Contemp. Math., 18 (2016), 1-28.  doi: 10.1142/S0219199715500935.
    [14] C. Cazacu and E. Zuazua, Improved multipolar Hardy inequalities, in Studies in Phase Space Analysis of PDEs (eds. M. Cicognani, F. Colombini and D. Del Santo), Progress in Nonlinear Differential Equations and Their Applications 84, Birkhäuser, New York (2013), 37–52. doi: 10.1007/978-1-4614-6348-1_3.
    [15] V. FelliE. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials, J. Funct. Anal., 250 (2007), 265-316.  doi: 10.1016/j.jfa.2006.10.019.
    [16] G. R. GoldsteinJ. A. Goldstein and A. Rhandi, Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential, Appl. Anal., 91 (2012), 2057-2071.  doi: 10.1080/00036811.2011.587809.
    [17] O. Ladyz'enskaya, V. Solonnikov and N. Ural'tseva, Linear and quasilinear equations of parabolic type, American Mathematical Society, Providence, Rhode Island, 1968.
    [18] L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups, Pure and Applied Mathematics, CRC Press, 2006.
    [19] E. Mitidieri, A simple approach to Hardy inequalities, Math. Notes, 67 (2000), 479-486.  doi: 10.1007/BF02676404.
    [20] J. D. Morgan, Schrödinger operators whose potentials have separated singularities, J. Operat. Theor., 1 (1979), 109-115. 
    [21] B. Simon, Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions, Ann. Inst. H. Poincaré Sect. A (N.S.), 38 (1983), 295-308. 
    [22] J. M. Tölle, Uniqueness of weighted Sobolev spaces with weakly differentiable weights, J. Funct. Anal., 263 (2012), 3195-3223.  doi: 10.1016/j.jfa.2012.08.002.
  • 加载中
SHARE

Article Metrics

HTML views(481) PDF downloads(187) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return