-
Previous Article
Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food
- CPAA Home
- This Issue
-
Next Article
New general decay result for a system of viscoelastic wave equations with past history
Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials
1. | Dipartimento di Ingegneria dell'Informazione ed Elettrica e Matematica Applicata, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy |
2. | Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", Università degli Studi di Napoli Federico Ⅱ, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy |
3. | Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Napoli Federico Ⅱ, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy |
$ \begin{equation*} c\int_{\mathbb{R}^N}\sum\limits_{i = 1}^n\frac{\varphi^2}{|x-a_i|^2}\,\mu(x)dx \leq\int_{\mathbb{R}^N}|\nabla \varphi |^2\mu(x)dx+ K\int_{\mathbb{R}^N} \varphi^2\mu(x)dx, \end{equation*} $ |
$ \mathbb{R}^N $ |
$ \varphi $ |
$ 0<c\le c_{o,\mu} $ |
$ a_1,\dots,a_n\in \mathbb{R}^N $ |
$ K $ |
$ \mu $ |
$ \begin{equation*} Lu = \Delta u+\frac{\nabla \mu}{\mu}\cdot\nabla u, \end{equation*} $ |
$ c $ |
$ c_{o,\mu} $ |
References:
[1] |
A. Albanese, L. Lorenzi and E. Mangino,
$L^p$–uniqueness for elliptic operators with unbounded coefficients in $\mathbb{R}
^N$, J. Funct. Anal., 256 (2009), 1238-1257.
doi: 10.1016/j.jfa.2008.07.022. |
[2] |
D. G. Aronson,
Non-negative solutions of linear parabolic equations, Ann. Sc. Norm. Super. Pisa, 22 (1968), 607-694.
|
[3] |
P. Baras and J. A. Goldstein,
The heat equation with a singular potential, Trans. Am. Math. Soc., 284 (1984), 121-139.
doi: 10.2307/1999277. |
[4] |
R. Bosi, J. Dolbeault and M. J. Esteban,
Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators, Commun. Pure Appl. Anal., 7 (2008), 533-562.
doi: 10.3934/cpaa.2008.7.533. |
[5] |
X. Cabré and Y. Martel,
Existence versus explosion instantanée pour des e$\acute{\rm{q}}$uations de la chaleur lineáires avec potentiel singulier, C. R. Acad. Sci. Paris, 329 (1999), 973-978.
doi: 10.1016/S0764-4442(00)88588-2. |
[6] |
A. Canale, F. Gregorio, A. Rhandi and C. Tacelli,
Weighted Hardy's inequalities and Kolmogorov-type operators, Appl. Anal., 98 (2019), 1236-1254.
doi: 10.1080/00036811.2017.1419200. |
[7] |
A. Canale, R. M. Mininni and A. Rhandi,
Analytic approach to solve a degenerate parabolic PDE for the Heston model, Math. Meth. Appl. Sci., 40 (2017), 4982-4992.
doi: 10.1002/mma.4363. |
[8] |
A. Canale and F. Pappalardo,
Weighted Hardy inequalities and Ornstein-Uhlenbeck type operators perturbed by multipolar inverse square potentials, J. Math. Anal. Appl., 463 (2018), 895-909.
doi: 10.1016/j.jmaa.2018.03.059. |
[9] |
A. Canale, F. Pappalardo and C. Tarantino,
A class of weighted Hardy inequalities and applications to evolution problems, Ann. Mat. Pura Appl., 199 (2020), 1171-1181.
doi: 10.1007/s10231-019-00916-y. |
[10] |
A. Canale, A. Rhandi and C. Tacelli,
Schrödinger type operators with unbounded diffusion and potential terms, Ann. Sc. Norm. Super. Pisa Cl. Sci., XVI (2016), 581-601.
doi: 10.2422/2036-2145.201409_007. |
[11] |
A. Canale, A. Rhandi and C. Tacelli,
Kernel estimates for Schrödinger type operators with unbounded diffusion and potential terms, Z. Anal. Anwend., 36 (2017), 377-392.
doi: 10.4171/ZAA/1593. |
[12] |
A. Canale and C. Tacelli,
Kernel estimates for a Schrödinger type operator, Riv. Mat. Univ. Parma, 7 (2016), 341-350.
|
[13] |
C. Cazacu,
New estimates for the Hardy constants of multipolar Schrödinger operators, Commun. Contemp. Math., 18 (2016), 1-28.
doi: 10.1142/S0219199715500935. |
[14] |
C. Cazacu and E. Zuazua, Improved multipolar Hardy inequalities, in Studies in Phase Space Analysis of PDEs (eds. M. Cicognani, F. Colombini and D. Del Santo), Progress in Nonlinear Differential Equations and Their Applications 84, Birkhäuser, New York (2013), 37–52.
doi: 10.1007/978-1-4614-6348-1_3. |
[15] |
V. Felli, E. M. Marchini and S. Terracini,
On Schrödinger operators with multipolar inverse-square potentials, J. Funct. Anal., 250 (2007), 265-316.
doi: 10.1016/j.jfa.2006.10.019. |
[16] |
G. R. Goldstein, J. A. Goldstein and A. Rhandi,
Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential, Appl. Anal., 91 (2012), 2057-2071.
doi: 10.1080/00036811.2011.587809. |
[17] |
O. Ladyz'enskaya, V. Solonnikov and N. Ural'tseva, Linear and quasilinear equations of parabolic type, American Mathematical Society, Providence, Rhode Island, 1968. |
[18] |
L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups, Pure and Applied Mathematics, CRC Press, 2006. |
[19] |
E. Mitidieri,
A simple approach to Hardy inequalities, Math. Notes, 67 (2000), 479-486.
doi: 10.1007/BF02676404. |
[20] |
J. D. Morgan,
Schrödinger operators whose potentials have separated singularities, J. Operat. Theor., 1 (1979), 109-115.
|
[21] |
B. Simon,
Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions, Ann. Inst. H. Poincaré Sect. A (N.S.), 38 (1983), 295-308.
|
[22] |
J. M. Tölle,
Uniqueness of weighted Sobolev spaces with weakly differentiable weights, J. Funct. Anal., 263 (2012), 3195-3223.
doi: 10.1016/j.jfa.2012.08.002. |
show all references
References:
[1] |
A. Albanese, L. Lorenzi and E. Mangino,
$L^p$–uniqueness for elliptic operators with unbounded coefficients in $\mathbb{R}
^N$, J. Funct. Anal., 256 (2009), 1238-1257.
doi: 10.1016/j.jfa.2008.07.022. |
[2] |
D. G. Aronson,
Non-negative solutions of linear parabolic equations, Ann. Sc. Norm. Super. Pisa, 22 (1968), 607-694.
|
[3] |
P. Baras and J. A. Goldstein,
The heat equation with a singular potential, Trans. Am. Math. Soc., 284 (1984), 121-139.
doi: 10.2307/1999277. |
[4] |
R. Bosi, J. Dolbeault and M. J. Esteban,
Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators, Commun. Pure Appl. Anal., 7 (2008), 533-562.
doi: 10.3934/cpaa.2008.7.533. |
[5] |
X. Cabré and Y. Martel,
Existence versus explosion instantanée pour des e$\acute{\rm{q}}$uations de la chaleur lineáires avec potentiel singulier, C. R. Acad. Sci. Paris, 329 (1999), 973-978.
doi: 10.1016/S0764-4442(00)88588-2. |
[6] |
A. Canale, F. Gregorio, A. Rhandi and C. Tacelli,
Weighted Hardy's inequalities and Kolmogorov-type operators, Appl. Anal., 98 (2019), 1236-1254.
doi: 10.1080/00036811.2017.1419200. |
[7] |
A. Canale, R. M. Mininni and A. Rhandi,
Analytic approach to solve a degenerate parabolic PDE for the Heston model, Math. Meth. Appl. Sci., 40 (2017), 4982-4992.
doi: 10.1002/mma.4363. |
[8] |
A. Canale and F. Pappalardo,
Weighted Hardy inequalities and Ornstein-Uhlenbeck type operators perturbed by multipolar inverse square potentials, J. Math. Anal. Appl., 463 (2018), 895-909.
doi: 10.1016/j.jmaa.2018.03.059. |
[9] |
A. Canale, F. Pappalardo and C. Tarantino,
A class of weighted Hardy inequalities and applications to evolution problems, Ann. Mat. Pura Appl., 199 (2020), 1171-1181.
doi: 10.1007/s10231-019-00916-y. |
[10] |
A. Canale, A. Rhandi and C. Tacelli,
Schrödinger type operators with unbounded diffusion and potential terms, Ann. Sc. Norm. Super. Pisa Cl. Sci., XVI (2016), 581-601.
doi: 10.2422/2036-2145.201409_007. |
[11] |
A. Canale, A. Rhandi and C. Tacelli,
Kernel estimates for Schrödinger type operators with unbounded diffusion and potential terms, Z. Anal. Anwend., 36 (2017), 377-392.
doi: 10.4171/ZAA/1593. |
[12] |
A. Canale and C. Tacelli,
Kernel estimates for a Schrödinger type operator, Riv. Mat. Univ. Parma, 7 (2016), 341-350.
|
[13] |
C. Cazacu,
New estimates for the Hardy constants of multipolar Schrödinger operators, Commun. Contemp. Math., 18 (2016), 1-28.
doi: 10.1142/S0219199715500935. |
[14] |
C. Cazacu and E. Zuazua, Improved multipolar Hardy inequalities, in Studies in Phase Space Analysis of PDEs (eds. M. Cicognani, F. Colombini and D. Del Santo), Progress in Nonlinear Differential Equations and Their Applications 84, Birkhäuser, New York (2013), 37–52.
doi: 10.1007/978-1-4614-6348-1_3. |
[15] |
V. Felli, E. M. Marchini and S. Terracini,
On Schrödinger operators with multipolar inverse-square potentials, J. Funct. Anal., 250 (2007), 265-316.
doi: 10.1016/j.jfa.2006.10.019. |
[16] |
G. R. Goldstein, J. A. Goldstein and A. Rhandi,
Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential, Appl. Anal., 91 (2012), 2057-2071.
doi: 10.1080/00036811.2011.587809. |
[17] |
O. Ladyz'enskaya, V. Solonnikov and N. Ural'tseva, Linear and quasilinear equations of parabolic type, American Mathematical Society, Providence, Rhode Island, 1968. |
[18] |
L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups, Pure and Applied Mathematics, CRC Press, 2006. |
[19] |
E. Mitidieri,
A simple approach to Hardy inequalities, Math. Notes, 67 (2000), 479-486.
doi: 10.1007/BF02676404. |
[20] |
J. D. Morgan,
Schrödinger operators whose potentials have separated singularities, J. Operat. Theor., 1 (1979), 109-115.
|
[21] |
B. Simon,
Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions, Ann. Inst. H. Poincaré Sect. A (N.S.), 38 (1983), 295-308.
|
[22] |
J. M. Tölle,
Uniqueness of weighted Sobolev spaces with weakly differentiable weights, J. Funct. Anal., 263 (2012), 3195-3223.
doi: 10.1016/j.jfa.2012.08.002. |
[1] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[2] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[3] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[4] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[5] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[6] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[7] |
Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020128 |
[8] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[9] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[10] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[11] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[12] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[13] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[14] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[15] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[16] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
[17] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[18] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[19] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[20] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]