• Previous Article
    The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field
  • CPAA Home
  • This Issue
  • Next Article
    Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials
January  2021, 20(1): 427-448. doi: 10.3934/cpaa.2020275

Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food

1. 

College of Mathematics, Sichuan University, Sichuan 610065, China

2. 

College of Applied Mathematics, Chengdu University of Information Technology, Sichuan 610225, China

3. 

School of Mathematical Sciences, Sichuan Normal University, Sichuan 610068, China

* Corresponding author

Received  March 2020 Revised  September 2020 Published  November 2020

Fund Project: The first author is supported by NSF grant 11901408 and 11711306

The article aims to investigate the dynamic transitions of a toxin-producing phytoplankton zooplankton model with additional food in a 2D-rectangular domain. The investigation is based on the dynamic transition theory for dissipative dynamical systems. Firstly, we verify the principle of exchange of stability by analysing the corresponding linear eigenvalue problem. Secondly, by using the technique of center manifold reduction, we determine the types of transitions. Our results imply that the model may bifurcate two new steady state solutions, which are either attractors or saddle points. In addition, the model may also bifurcate a new periodic solution as the control parameter passes critical value. Finally, some numerical results are given to illustrate our conclusions.

Citation: Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275
References:
[1]

S. ChakrabortyP. TiwariA. Misra and J. Chattopadhyay, Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton, Math. Bio., 264 (2015), 94-100.  doi: 10.1016/j.mbs.2015.03.010.  Google Scholar

[2]

H. DijkstraT. SengulJ. Shen and S. Wang., Dynamic transition of quasi-geostrophic channel flow, SIAM J. Appl. Math., 75 (2015), 2361-2378.  doi: 10.1137/15M1008166.  Google Scholar

[3]

M. Garvie, Finite-difference schemes for reaction-diffusion equations modelling predator-prey interactions in matlab, B. Math. Biol., 69 (2007), 931-956.  doi: 10.1007/s11538-006-9062-3.  Google Scholar

[4]

R. Han and B. Dai, Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with allee effect, Nonlinear Anal. Real World Appl., 45 (2019), 822-853.  doi: 10.1016/j.nonrwa.2018.05.018.  Google Scholar

[5]

D. HanM. Hernandez and Q. Wang, On the instabilities and transitions of the Western boundary current, Commun. Comput. Phys., 26 (2019), 35-56.  doi: 10.4208/cicp.oa-2018-0066.  Google Scholar

[6]

D. HanM. Hernandez and Q. Wang, Dynamical transitions of a low-dimensional model for rayleigh-b$\acute{e}$nard convection under a vertical magnetic field, Chaos Solitons Fractals, 114 (2018), 370-380.  doi: 10.1016/j.chaos.2018.06.027.  Google Scholar

[7]

C. Hsia, C. Lin, T. Ma and S. Wang, Tropical atmospheric circulations with humidity effects, Proc. A., 471 (2015), 20140353. doi: 10.1098/rspa.2014.0353.  Google Scholar

[8]

C. HsiaT. Ma and S. Wang, Rotating boussinesq equations: dynamic stability and transition, Discrete Contin Dyn. Syst. Ser. A, 28 (2010), 99-130.  doi: 10.3934/dcds.2010.28.99.  Google Scholar

[9]

S. JangJ. Baglama and W. Li, Dynamics of phytoplankton-zooplankton systems with toxin producing phytoplankton, Appl. Math. Comput., 227 (2014), 717-740.  doi: 10.1016/j.amc.2013.11.051.  Google Scholar

[10]

Z. Jiang and T. Zhang, Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with delay, Chaos Solitons Fractals, 104 (2017), 693-704.  doi: 10.1016/j.chaos.2017.09.030.  Google Scholar

[11]

C. KieuT. SengulQ. Wang and D. Yan, On the Hopf (double Hopf) bifurcations and transitions of two layer western boundary currents, Commun. Nonlinear Sci. Numer. Simul., 65 (2018), 196-215.  doi: 10.1016/j.cnsns.2018.05.010.  Google Scholar

[12]

H. Liu, T. Sengul and S. Wang, Dynamic transition for quasilinear system and Cahn-Hilliard equation with onsager mobility, J. Math. Phys., 53 (2012), 023518, 31. doi: 10.1063/1.3687414.  Google Scholar

[13]

H. LiuT. SengulS. Wang and P. Zhang, Dynamic transition and pattern formation for a Cahn-Hilliard model with long-range repulsive interactions, Commun. Math. Sci., 13 (2015), 1289-1315.  doi: 10.4310/CMS.2015.v13.n5.a10.  Google Scholar

[14]

C. Lu, Y. Mao, T. Sengul and Q. Wang, On the spectral instability and bifurcation of the 2D-quasi-geostrophic potential vorticity equation with a generalized Kolmogorov forcing, Phys. D, 403 (2020), 132296. doi: 10.1016/j.physd.2019.132296.  Google Scholar

[15]

Y. Mao, Dynamic transitions of the fitzhugh-nagumo equations on a finite domain, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3935-3947.  doi: 10.3934/dcdsb.2018118.  Google Scholar

[16]

T. Ma and S. Wang, Dynamic transition for thermohaline circulation, Phys. D, 239 (2010), 167-189.  doi: 10.1016/j.physd.2009.10.014.  Google Scholar

[17]

T. Ma and S. Wang, Phase Transition Dynamics, Springer, New York, 2014. doi: 10.1007/978-1-4614-8963-4.  Google Scholar

[18]

T. Ma and S. Wang, Dynamic transition and pattern formation for chemotactic systems, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2809-2835.  doi: 10.3934/dcdsb.2014.19.2809.  Google Scholar

[19]

Y. MaoD. Yan and C. Lu, Dynamic transitions and stability for the acetabularia whorl formation, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5989-6004.  doi: 10.3934/dcdsb.2019117.  Google Scholar

[20]

A. MedvinskyS. PetrovskiiI. TikhonovaH. Malchow and B. Liu, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 3 (2002), 311-370.  doi: 10.1137/S0036144502404442.  Google Scholar

[21]

Z. Pan, T. Sengul and Q. Wang, On the viscous instabilities and transitions of two-layer model with a layered topography, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 104978. doi: 10.1016/j.cnsns.2019.104978.  Google Scholar

[22]

F. Rao, Spatiotemporal dynamics in a reaction-diffusion toxic-phytoplankton zooplankton model, J. Stat. Mech. Theory Exp., (2013), 08014. doi: 10.1088/1742-5468/2013/08/p08014.  Google Scholar

[23]

T. Saha and M. Bandyopahyay, Dynamical analysis of toxin producing phytoplankton-zooplankton interactions, Nonlinear Anal. Real World Appl., 10 (2009), 314-332.  doi: 10.1016/j.nonrwa.2007.09.001.  Google Scholar

[24]

Q. Song, R. Yang, C. Zhang and L. Tang, Bifurcation Analysis of a Diffusive Predator-Prey Model with Monod-Haldane Functional Response, Int. J. Bifurcat. Chaos, 29 (2019), 1950152. doi: 10.1142/S0218127419501529.  Google Scholar

[25]

W. WangS. LiuD. Tian and D. Wang, Pattern dynamics in a toxin-producing phytoplankton-zooplankton model with additional food, Nonlinear Dyn., 94 (2018), 211-228.   Google Scholar

[26]

R. Yang and C. Zhang, Dynamics in a diffusive predator-prey system with a constant prey refuge and delay, Nonlinear Anal. Real World Appl., 31 (2016), 1-22. doi: 10.1016/j.nonrwa.2016.01.005.  Google Scholar

[27]

X. YuS. Yuan and T. Zhang, Survival and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment, Appl. Math. Comput., 347 (2019), 249-264.  doi: 10.1016/j.amc.2018.11.005.  Google Scholar

[28]

D. Zhang and R. Liu, Dynamical transition for S-K-T biological competing model with cross-diffusion, Math. Methods Appl. Sci., 41 (2018), 4641-4658.  doi: 10.1002/mma.4919.  Google Scholar

[29]

W. Zheng and J. Sugie, Global asymptotic stability and equiasymptotic stability for time-varying phytoplankton-zooplankton-fish system, Nonlinear Anal. Real World Appl., 46 (2019), 116-136.  doi: 10.1016/j.nonrwa.2018.09.015.  Google Scholar

show all references

References:
[1]

S. ChakrabortyP. TiwariA. Misra and J. Chattopadhyay, Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton, Math. Bio., 264 (2015), 94-100.  doi: 10.1016/j.mbs.2015.03.010.  Google Scholar

[2]

H. DijkstraT. SengulJ. Shen and S. Wang., Dynamic transition of quasi-geostrophic channel flow, SIAM J. Appl. Math., 75 (2015), 2361-2378.  doi: 10.1137/15M1008166.  Google Scholar

[3]

M. Garvie, Finite-difference schemes for reaction-diffusion equations modelling predator-prey interactions in matlab, B. Math. Biol., 69 (2007), 931-956.  doi: 10.1007/s11538-006-9062-3.  Google Scholar

[4]

R. Han and B. Dai, Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with allee effect, Nonlinear Anal. Real World Appl., 45 (2019), 822-853.  doi: 10.1016/j.nonrwa.2018.05.018.  Google Scholar

[5]

D. HanM. Hernandez and Q. Wang, On the instabilities and transitions of the Western boundary current, Commun. Comput. Phys., 26 (2019), 35-56.  doi: 10.4208/cicp.oa-2018-0066.  Google Scholar

[6]

D. HanM. Hernandez and Q. Wang, Dynamical transitions of a low-dimensional model for rayleigh-b$\acute{e}$nard convection under a vertical magnetic field, Chaos Solitons Fractals, 114 (2018), 370-380.  doi: 10.1016/j.chaos.2018.06.027.  Google Scholar

[7]

C. Hsia, C. Lin, T. Ma and S. Wang, Tropical atmospheric circulations with humidity effects, Proc. A., 471 (2015), 20140353. doi: 10.1098/rspa.2014.0353.  Google Scholar

[8]

C. HsiaT. Ma and S. Wang, Rotating boussinesq equations: dynamic stability and transition, Discrete Contin Dyn. Syst. Ser. A, 28 (2010), 99-130.  doi: 10.3934/dcds.2010.28.99.  Google Scholar

[9]

S. JangJ. Baglama and W. Li, Dynamics of phytoplankton-zooplankton systems with toxin producing phytoplankton, Appl. Math. Comput., 227 (2014), 717-740.  doi: 10.1016/j.amc.2013.11.051.  Google Scholar

[10]

Z. Jiang and T. Zhang, Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with delay, Chaos Solitons Fractals, 104 (2017), 693-704.  doi: 10.1016/j.chaos.2017.09.030.  Google Scholar

[11]

C. KieuT. SengulQ. Wang and D. Yan, On the Hopf (double Hopf) bifurcations and transitions of two layer western boundary currents, Commun. Nonlinear Sci. Numer. Simul., 65 (2018), 196-215.  doi: 10.1016/j.cnsns.2018.05.010.  Google Scholar

[12]

H. Liu, T. Sengul and S. Wang, Dynamic transition for quasilinear system and Cahn-Hilliard equation with onsager mobility, J. Math. Phys., 53 (2012), 023518, 31. doi: 10.1063/1.3687414.  Google Scholar

[13]

H. LiuT. SengulS. Wang and P. Zhang, Dynamic transition and pattern formation for a Cahn-Hilliard model with long-range repulsive interactions, Commun. Math. Sci., 13 (2015), 1289-1315.  doi: 10.4310/CMS.2015.v13.n5.a10.  Google Scholar

[14]

C. Lu, Y. Mao, T. Sengul and Q. Wang, On the spectral instability and bifurcation of the 2D-quasi-geostrophic potential vorticity equation with a generalized Kolmogorov forcing, Phys. D, 403 (2020), 132296. doi: 10.1016/j.physd.2019.132296.  Google Scholar

[15]

Y. Mao, Dynamic transitions of the fitzhugh-nagumo equations on a finite domain, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3935-3947.  doi: 10.3934/dcdsb.2018118.  Google Scholar

[16]

T. Ma and S. Wang, Dynamic transition for thermohaline circulation, Phys. D, 239 (2010), 167-189.  doi: 10.1016/j.physd.2009.10.014.  Google Scholar

[17]

T. Ma and S. Wang, Phase Transition Dynamics, Springer, New York, 2014. doi: 10.1007/978-1-4614-8963-4.  Google Scholar

[18]

T. Ma and S. Wang, Dynamic transition and pattern formation for chemotactic systems, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2809-2835.  doi: 10.3934/dcdsb.2014.19.2809.  Google Scholar

[19]

Y. MaoD. Yan and C. Lu, Dynamic transitions and stability for the acetabularia whorl formation, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5989-6004.  doi: 10.3934/dcdsb.2019117.  Google Scholar

[20]

A. MedvinskyS. PetrovskiiI. TikhonovaH. Malchow and B. Liu, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 3 (2002), 311-370.  doi: 10.1137/S0036144502404442.  Google Scholar

[21]

Z. Pan, T. Sengul and Q. Wang, On the viscous instabilities and transitions of two-layer model with a layered topography, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 104978. doi: 10.1016/j.cnsns.2019.104978.  Google Scholar

[22]

F. Rao, Spatiotemporal dynamics in a reaction-diffusion toxic-phytoplankton zooplankton model, J. Stat. Mech. Theory Exp., (2013), 08014. doi: 10.1088/1742-5468/2013/08/p08014.  Google Scholar

[23]

T. Saha and M. Bandyopahyay, Dynamical analysis of toxin producing phytoplankton-zooplankton interactions, Nonlinear Anal. Real World Appl., 10 (2009), 314-332.  doi: 10.1016/j.nonrwa.2007.09.001.  Google Scholar

[24]

Q. Song, R. Yang, C. Zhang and L. Tang, Bifurcation Analysis of a Diffusive Predator-Prey Model with Monod-Haldane Functional Response, Int. J. Bifurcat. Chaos, 29 (2019), 1950152. doi: 10.1142/S0218127419501529.  Google Scholar

[25]

W. WangS. LiuD. Tian and D. Wang, Pattern dynamics in a toxin-producing phytoplankton-zooplankton model with additional food, Nonlinear Dyn., 94 (2018), 211-228.   Google Scholar

[26]

R. Yang and C. Zhang, Dynamics in a diffusive predator-prey system with a constant prey refuge and delay, Nonlinear Anal. Real World Appl., 31 (2016), 1-22. doi: 10.1016/j.nonrwa.2016.01.005.  Google Scholar

[27]

X. YuS. Yuan and T. Zhang, Survival and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment, Appl. Math. Comput., 347 (2019), 249-264.  doi: 10.1016/j.amc.2018.11.005.  Google Scholar

[28]

D. Zhang and R. Liu, Dynamical transition for S-K-T biological competing model with cross-diffusion, Math. Methods Appl. Sci., 41 (2018), 4641-4658.  doi: 10.1002/mma.4919.  Google Scholar

[29]

W. Zheng and J. Sugie, Global asymptotic stability and equiasymptotic stability for time-varying phytoplankton-zooplankton-fish system, Nonlinear Anal. Real World Appl., 46 (2019), 116-136.  doi: 10.1016/j.nonrwa.2018.09.015.  Google Scholar

Figure 1.  The topological structure of phase portrait of continuous transition as control parameter $ \Lambda>\Lambda_{c} $
Figure 2.  The topological structure of phase portrait of continuous transition as control parameter $ \Lambda<\Lambda_{c} $
Figure 3.  The topological structure of phase portrait of jump transition as control parameter $ \Lambda<\Lambda_{c} $
Figure 4.  The topological structure of phase portrait of jump transition as control parameter $ \Lambda>\Lambda_{c} $
Figure 5.  The graph of critical parameter $ \Lambda_{c} $ and $ \lambda_{c} $ as $ n\in [0.1,1.5] $ and $ d\in [6,13] $
Figure 6.  The regions separating two types of transitions. Region A, continuous transitions from a real simple eigenvalue; Region B, jump transitions from a pair of simple complex eigenvalues
Figure 7.  The numerical solutions $ u_{1} $ and $ u_{2} $ at time T = 600. The parameter $ \lambda = 0.52 $
Figure 8.  The numerical solutions $ u_{1} $ and $ u_{2} $ at time T = 600. The parameter $ \lambda = 0.58 $
[1]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[4]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[5]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[6]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[7]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[8]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

[9]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[10]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020361

[11]

Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020370

[12]

Hanyu Gu, Hue Chi Lam, Yakov Zinder. Planning rolling stock maintenance: Optimization of train arrival dates at a maintenance center. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020177

[13]

Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020359

[14]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[15]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[16]

Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020369

[17]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[18]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[19]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[20]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (55)
  • HTML views (34)
  • Cited by (0)

Other articles
by authors

[Back to Top]