
-
Previous Article
Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line
- CPAA Home
- This Issue
-
Next Article
Response solutions to harmonic oscillators beyond multi–dimensional Brjuno frequency
On the Cahn-Hilliard equation with mass source for biological applications
1. | Lebanese International University, School of Arts and Sciences, Department of Mathematics and Physics, Bekaa campus, Lebanon |
2. | Lebanese University, Faculty of Sciences, Department of Mathematics, Houch el Oumara, Zahle, Lebanon |
3. | Politehnica University of Bucharest, Splaiul Independentei 313, 060042, Bucharest, Romania |
This article deals with some generalizations of the Cahn–Hilliard equation with mass source endowed with Neumann boundary conditions. This equation has many applications in real life e.g. in biology and image inpainting. The first part of this article, discusses the stationary problem of the Cahn–Hilliard equation with mass source. We prove the existence of a unique solution of the associated stationary problem. Then, in the latter part of this article, we consider the evolution problem of the Cahn–Hilliard equation with mass source. We construct a numerical scheme of the model based on a finite element discretization in space and backward Euler scheme in time. Furthermore, after obtaining some error estimates on the numerical solution, we prove that the semi discrete scheme converges to the continuous problem. In addition, we prove the stability of our scheme which allows us to obtain the convergence of the fully discrete problem to the semi discrete one. Finally, we perform the numerical simulations that confirm the theoretical results and demonstrate the performance of our scheme for cancerous tumor growth and image inpainting.
References:
[1] |
A. C. Aristotelous, O. A. Karakashian and S. M. Wise,
Adaptive, second order in time, primitive-variable discontinuous Galerkin schemes for a Cahn–Hilliard equation with a mass source, IMA J. Numer. Anal, 35 (2015), 1167-1198.
doi: 10.1093/imanum/dru035. |
[2] |
A. Bertozzi, S. Esedoglu and A. Gillette,
Inpainting of binary images using the Cahn–Hilliard equation, IEEE Trans. Imaging Proc., 16 (2007), 285-291.
doi: 10.1109/TIP.2006.887728. |
[3] |
A. Bertozzi, S. Esedoglu and A. Gillette,
Analysis of a two-scale Cahn–Hilliard model for binary image inpainting, Multiscale Model. Simul., 6 (2007), 913-936.
doi: 10.1137/060660631. |
[4] |
M. Burger, L. He and C. Schönlieb,
Cahn–Hilliard inpainting and a generalization for grayvalue images, SIAM J. Imaging Sci., 3 (2009), 1129-1167.
doi: 10.1137/080728548. |
[5] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. Google Scholar |
[6] |
L. Cherfils, H. Fakih and A. Miranville,
Finite-dimensional attractors for the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation in image inpainting, Inv. Prob. Imaging, 9 (2015), 105-125.
doi: 10.3934/ipi.2015.9.105. |
[7] |
L. Cherfils, H. Fakih and A. Miranville,
On the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation with logarithmic nonlinear terms, SIAM J. Imag. Sci., 8 (2015), 1123-1140.
doi: 10.1137/140985627. |
[8] |
L. Cherfils, H. Fakih and A. Miranville,
A Cahn–Hilliard system with a fidelity term for color image inpainting, J. Math. Imaging Vis., 54 (2016), 117-131.
doi: 10.1007/s10851-015-0593-9. |
[9] |
L. Cherfils, H. Fakih and A. Miranville,
A complex version of the Cahn-Hilliard equation for grayscale image inpainting, J. Multiscale Model. Simul., 15 (2017), 575-605.
doi: 10.1137/15M1040177. |
[10] |
L. Cherfils, A. Miranville and S. Zelik,
The Cahn–Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596.
doi: 10.1007/s00032-011-0165-4. |
[11] |
L. Cherfils, A. Miranville and S. Zelik,
On a generalized Cahn–Hilliard equation with biological applications, Discrete Cont. Dyn.-B, 19 (2014), 2013-2026.
doi: 10.3934/dcdsb.2014.19.2013. |
[12] |
L. Cherfils, M. Petcu and M. Pierre,
A numerical analysis of the Cahn–Hilliard equation with dynamic boundary conditions, Discrete Cont. Dyn. S., 27 (2010), 1511-1533.
doi: 10.3934/dcds.2010.27.1511. |
[13] |
I. C. Dolcetta, S. F. Vita and R. March,
Area-preserving curve-shortening flows: from phase separation to image processing, Interface. Free Bound., 4 (2002), 325-343.
doi: 10.4171/IFB/64. |
[14] |
C. M. Elliott, D. A. French and F. A. Milner,
A second order splitting method for the Cahn–Hilliard equation, Numer. Math., 54 (1989), 575-590.
doi: 10.1007/BF01396363. |
[15] |
A. Ern and J. L. Guermond, Elements finis: theorie, applications, mise en oeuvre, Springer-Verlag, Berlin, 2002. |
[16] |
H. Fakih,
Asymptotic behavior of a generalized Cahn–Hilliard, equation with a mass source, Appl. Anal., 96 (2016), 324-348.
doi: 10.1080/00036811.2015.1135241. |
[17] |
H. Fakih,
A Cahn–Hilliard equation with a proliferation term for biological and chemical applications, Asympt. Anal., 94 (2015), 71-104.
doi: 10.3233/ASY-151306. |
[18] |
F. Hecht,
New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.
doi: 10.1515/jnum-2012-0013. |
[19] |
E. Khain and L. M. Sander, A generalized Cahn–Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 51-129. Google Scholar |
[20] |
A. Miranville,
Asymptotic behavior of the Cahn–Hilliard–Oono equation, J. Appl. Anal. Comp., 1 (2011), 523-536.
|
[21] |
A. Miranville,
Asymptotic behavior of a generalized Cahn–Hilliard equation with a proliferation, Appl. Anal., 92 (2013), 1308-1321.
doi: 10.1080/00036811.2012.671301. |
[22] |
A. Miranville,
Existence of solutions to a Cahn–Hilliard type equation with a logarithmic nonlinear term, Mediterr. J. Math., 16 (2019), 1-18.
doi: 10.1007/s00009-018-1284-8. |
[23] |
A. Miranville,
The Cahn–Hilliard equation and some of its variants, AIMS Math., 2 (2017), 479-544.
|
[24] |
A. Novick-Cohen and L. A. Segal,
Nonlinear Cahn–Hiliard equation, Proc. Roy. Soc. London Ser. A, 422 (1989), 261-278.
|
[25] |
Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839. Google Scholar |
[26] |
C. B. Schönlieb and A. Bertozzi,
Unconditionally stable schemes for higher order inpainting, Commun. Math. Sci., 9 (2011), 413-457.
|
[27] |
S. Villain-Guillot, Phases modulées et dynamique de Cahn–Hilliard, Habilitation thesis, Habilitation thesis, Université Bordeaux 1, 2010. Google Scholar |
show all references
References:
[1] |
A. C. Aristotelous, O. A. Karakashian and S. M. Wise,
Adaptive, second order in time, primitive-variable discontinuous Galerkin schemes for a Cahn–Hilliard equation with a mass source, IMA J. Numer. Anal, 35 (2015), 1167-1198.
doi: 10.1093/imanum/dru035. |
[2] |
A. Bertozzi, S. Esedoglu and A. Gillette,
Inpainting of binary images using the Cahn–Hilliard equation, IEEE Trans. Imaging Proc., 16 (2007), 285-291.
doi: 10.1109/TIP.2006.887728. |
[3] |
A. Bertozzi, S. Esedoglu and A. Gillette,
Analysis of a two-scale Cahn–Hilliard model for binary image inpainting, Multiscale Model. Simul., 6 (2007), 913-936.
doi: 10.1137/060660631. |
[4] |
M. Burger, L. He and C. Schönlieb,
Cahn–Hilliard inpainting and a generalization for grayvalue images, SIAM J. Imaging Sci., 3 (2009), 1129-1167.
doi: 10.1137/080728548. |
[5] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. Google Scholar |
[6] |
L. Cherfils, H. Fakih and A. Miranville,
Finite-dimensional attractors for the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation in image inpainting, Inv. Prob. Imaging, 9 (2015), 105-125.
doi: 10.3934/ipi.2015.9.105. |
[7] |
L. Cherfils, H. Fakih and A. Miranville,
On the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation with logarithmic nonlinear terms, SIAM J. Imag. Sci., 8 (2015), 1123-1140.
doi: 10.1137/140985627. |
[8] |
L. Cherfils, H. Fakih and A. Miranville,
A Cahn–Hilliard system with a fidelity term for color image inpainting, J. Math. Imaging Vis., 54 (2016), 117-131.
doi: 10.1007/s10851-015-0593-9. |
[9] |
L. Cherfils, H. Fakih and A. Miranville,
A complex version of the Cahn-Hilliard equation for grayscale image inpainting, J. Multiscale Model. Simul., 15 (2017), 575-605.
doi: 10.1137/15M1040177. |
[10] |
L. Cherfils, A. Miranville and S. Zelik,
The Cahn–Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596.
doi: 10.1007/s00032-011-0165-4. |
[11] |
L. Cherfils, A. Miranville and S. Zelik,
On a generalized Cahn–Hilliard equation with biological applications, Discrete Cont. Dyn.-B, 19 (2014), 2013-2026.
doi: 10.3934/dcdsb.2014.19.2013. |
[12] |
L. Cherfils, M. Petcu and M. Pierre,
A numerical analysis of the Cahn–Hilliard equation with dynamic boundary conditions, Discrete Cont. Dyn. S., 27 (2010), 1511-1533.
doi: 10.3934/dcds.2010.27.1511. |
[13] |
I. C. Dolcetta, S. F. Vita and R. March,
Area-preserving curve-shortening flows: from phase separation to image processing, Interface. Free Bound., 4 (2002), 325-343.
doi: 10.4171/IFB/64. |
[14] |
C. M. Elliott, D. A. French and F. A. Milner,
A second order splitting method for the Cahn–Hilliard equation, Numer. Math., 54 (1989), 575-590.
doi: 10.1007/BF01396363. |
[15] |
A. Ern and J. L. Guermond, Elements finis: theorie, applications, mise en oeuvre, Springer-Verlag, Berlin, 2002. |
[16] |
H. Fakih,
Asymptotic behavior of a generalized Cahn–Hilliard, equation with a mass source, Appl. Anal., 96 (2016), 324-348.
doi: 10.1080/00036811.2015.1135241. |
[17] |
H. Fakih,
A Cahn–Hilliard equation with a proliferation term for biological and chemical applications, Asympt. Anal., 94 (2015), 71-104.
doi: 10.3233/ASY-151306. |
[18] |
F. Hecht,
New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.
doi: 10.1515/jnum-2012-0013. |
[19] |
E. Khain and L. M. Sander, A generalized Cahn–Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 51-129. Google Scholar |
[20] |
A. Miranville,
Asymptotic behavior of the Cahn–Hilliard–Oono equation, J. Appl. Anal. Comp., 1 (2011), 523-536.
|
[21] |
A. Miranville,
Asymptotic behavior of a generalized Cahn–Hilliard equation with a proliferation, Appl. Anal., 92 (2013), 1308-1321.
doi: 10.1080/00036811.2012.671301. |
[22] |
A. Miranville,
Existence of solutions to a Cahn–Hilliard type equation with a logarithmic nonlinear term, Mediterr. J. Math., 16 (2019), 1-18.
doi: 10.1007/s00009-018-1284-8. |
[23] |
A. Miranville,
The Cahn–Hilliard equation and some of its variants, AIMS Math., 2 (2017), 479-544.
|
[24] |
A. Novick-Cohen and L. A. Segal,
Nonlinear Cahn–Hiliard equation, Proc. Roy. Soc. London Ser. A, 422 (1989), 261-278.
|
[25] |
Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839. Google Scholar |
[26] |
C. B. Schönlieb and A. Bertozzi,
Unconditionally stable schemes for higher order inpainting, Commun. Math. Sci., 9 (2011), 413-457.
|
[27] |
S. Villain-Guillot, Phases modulées et dynamique de Cahn–Hilliard, Habilitation thesis, Habilitation thesis, Université Bordeaux 1, 2010. Google Scholar |



[1] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[2] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021018 |
[3] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
[4] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[5] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[6] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[7] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[8] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[9] |
Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321 |
[10] |
Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2020056 |
[11] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[12] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[13] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[14] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[15] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[16] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[17] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[18] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[19] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[20] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]