-
Previous Article
Homogenization and singular perturbation in porous media
- CPAA Home
- This Issue
-
Next Article
On the Cahn-Hilliard equation with mass source for biological applications
Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line
1. | Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile |
2. | Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Peñalolén, Santiago, Chile |
A linear system of difference equations and a nonlinear perturbation are considered, we obtain sufficient conditions to ensure the topological equivalence between them, namely, the linear part satisfies a property of dichotomy on the positive half–line while the nonlinearity has some boundedness and Lipschitz conditions. In addition, we provide new characterizations for the resulting homeomorphisms. When the linear system is asymptotically stable and the nonlinear system has a unique equilibrium, we deduce sharper results for the smoothness of the topological equivalence. Finally, we study the asymptotic stability and its preservation by topological equivalence.
References:
[1] |
B. Aulbach and S. Siegmund, A spectral theory for nonautonomous difference equations, in New Trends in Difference Equations, London, 2002. |
[2] |
M.G. Babutia and M. Megan, Nonuniform exponential dichotomy for discrete dynamical systems in Banach spaces, Mediterr. J. Math., 13 (2016) 1653–1667.
doi: 10.1007/s00009-015-0605-4. |
[3] |
L. Barreira and C. Valls,
A Grobman–Hartman theorem for nonuniformly hyperbolic dynamics, J. Differ. Equ., 228 (2006), 285-310.
doi: 10.1016/j.jde.2006.04.001. |
[4] |
L. Barreira, M. Fan, C. Valls and J. Zhang,
Robustness of nonuniform polynomial dichotomies for difference equations, Topol. Methods Nonlinear Anal., 37 (2011), 357-376.
|
[5] |
L. Barreira, L. H. Popescu and C. Valls,
Nonautonomous dynamics with discrete time and topological equivalence, Z. Anal. Anwend., 35 (2016), 21-39.
doi: 10.4171/ZAA/1553. |
[6] |
A. Bento and C. Silva,
Nonuniform $(\mu, \nu)$–dichotomies and local dynamics of difference equations, Nonlinear Anal., 75 (2012), 78-90.
doi: 10.1016/j.na.2011.08.008. |
[7] |
Á. Castañeda and G. Robledo,
A topological equivalence result for a family of nonlinear difference systems having generalized exponential dichotomy, J. Difference Equ. Appl., 22 (2016), 1271-1291.
doi: 10.1080/10236198.2016.1192161. |
[8] |
Á. Castañeda and G. Robledo,
Dichotomy spectrum and almost topological conjugacy on nonautonomous unbounded difference systems, Discrete Contin. Dyn. Syst., 38 (2018), 2287-2304.
doi: 10.3934/dcds.2018094. |
[9] |
Á. Castañeda, P. Monzón and G. Robledo, Smoothness of Topological Equivalence on the Half Line for Nonautonomous Systems, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 2484-2502.
doi: 10.1017/prm.2019.32. |
[10] |
J. Chu,
Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 137 (2013), 1031-1047.
doi: 10.1016/j.bulsci.2013.03.003. |
[11] |
Ch. V Coffman and J. J. Schäfer,
Dichotomies for linear difference equations, Math. Ann., 172 (1967), 139-166.
doi: 10.1007/BF01350095. |
[12] |
W. A. Coppel, Dichotomies in Stability Theory, Springer, Verlag, Berlin, 1978. |
[13] |
V. Crai and M. Aldescu, On $(h, k)$–dichotomy of linear discrete-time systems in Banach spaces, Difference equations, discrete dynamical systems and applications, Springer Proc. Math. Stat., 287, Springer, Cham, 2019,257–271.
doi: 10.1007/978-3-030-20016-9_10. |
[14] |
D. Dragi$\check{c}$ević, W. Zhang and W. Zhang,
Smooth linearization of nonautonomous difference equations with a nonuniform dichotomy, Math. Z., 292 (2019), 1175-1193.
doi: 10.1007/s00209-018-2134-x. |
[15] |
S. Elaydi, An Introduction to Difference Equations, Springer, New York, 2005. |
[16] |
D. M. Grobman,
Homeomorphism of systems of differential equations, Dokl. Akad. Nauk. SSSR, 128 (1959), 880-881.
|
[17] |
P. Hartman,
On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana (2), 5 (1960), 220-241.
|
[18] |
D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I, Springer, Heidelberg, Berlin, 2010. |
[19] |
J. Kurzweil and G. Papaschinopoulos,
Topological equivalence and structural stability for linear difference equations, J. Differ. Equ., 89 (1991), 89-94.
doi: 10.1016/0022-0396(91)90112-M. |
[20] |
Z. Lin and Y. X. Lin, Linear Systems Exponential Dichotomy and Structure of Sets of Hyperbolic Points, World Scientific, Singapore, 2000.
doi: 10.1142/9789812793027. |
[21] |
J. Palis,
On the local structure of hyperbolic points in Banach space, An. Acad. Brasil. Ci., 40 (1968), 263-266.
|
[22] |
K. J. Palmer,
A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 41 (1973), 753-758.
doi: 10.1016/0022-247X(73)90245-X. |
[23] |
G. Papaschinopoulos,
Criteria for an exponential dichotomy of difference equations, Czechoslovak Math. J., 35 (1985), 295-299.
|
[24] |
G. Papaschinopoulos and G. Schinas,
Structural stability via the density of a class of linear discrete systems, J. Math. Anal. Appl., 127 (1987), 530-539.
doi: 10.1016/0022-247X(87)90127-2. |
[25] |
G. Papaschinopoulos,
Some roughness results concerning reducibility for linear difference equations, Internat. J. Math. Sci., 11 (1988), 793-804.
doi: 10.1155/S0161171288000961. |
[26] |
G. Papaschinopoulos,
A linearization result for a differential equation with piecewise constant argument, Analysis, 16 (1996), 161-170.
doi: 10.1524/anly.1996.16.2.161. |
[27] |
R. Plastock,
Homeomorphisms between Banach spaces, T. Am. Math. Soc., 200 (1974), 169-183.
doi: 10.2307/1997252. |
[28] |
J. Popenda,
Gronwall type inequalities, Z. Angew. Math. Mech., 75 (1995), 669-677.
doi: 10.1002/zamm.19950750903. |
[29] |
C. Pugh,
On a theorem of P. Hartman, Amer. J. Math., 91 (1969), 363-367.
doi: 10.2307/2373513. |
[30] |
V. Rayskin,
$\alpha-$H$\ddot{o}$lder linearization, J. Differ. Equ., 147 (1998), 271-284.
doi: 10.1006/jdeq.1997.3410. |
[31] |
A. Reinfelds,
Global topological equivalence of nonlinear flows, Differencial'nye Uravnenija, 10 (1972), 1901-1903.
|
[32] |
A. Reinfelds, Grobman's–Hartman's theorem for time-dependent difference equations, Math. Differ. equ. (Russian), 9-13, Latv. Univ. Zinat. Raksti, 605, Latv. Univ., Riga, 1997. |
[33] |
A. Reinfelds and D. $\check{S}$teinberga., Dynamical equivalence of quasilinear equations, Internat. J. Pure Appl. Math. 98 (2015), 355-364.
doi: 10.1515/tmmp-2015-0035. |
[34] |
J. Schinas and G. Papaschinopoulos,
Topological equivalence via dichotomies and Lyapunov functions, Boll. Un. Mat. Ital. C (6), 4 (1985), 61-70.
|
[35] |
W. Zhou and W. Zhang,
Admissibility and roughness of nonuniform exponential dichotomies for difference equations, J. Funct. Anal., 271 (2016), 1087-1129.
doi: 10.1016/j.jfa.2016.06.005. |
show all references
References:
[1] |
B. Aulbach and S. Siegmund, A spectral theory for nonautonomous difference equations, in New Trends in Difference Equations, London, 2002. |
[2] |
M.G. Babutia and M. Megan, Nonuniform exponential dichotomy for discrete dynamical systems in Banach spaces, Mediterr. J. Math., 13 (2016) 1653–1667.
doi: 10.1007/s00009-015-0605-4. |
[3] |
L. Barreira and C. Valls,
A Grobman–Hartman theorem for nonuniformly hyperbolic dynamics, J. Differ. Equ., 228 (2006), 285-310.
doi: 10.1016/j.jde.2006.04.001. |
[4] |
L. Barreira, M. Fan, C. Valls and J. Zhang,
Robustness of nonuniform polynomial dichotomies for difference equations, Topol. Methods Nonlinear Anal., 37 (2011), 357-376.
|
[5] |
L. Barreira, L. H. Popescu and C. Valls,
Nonautonomous dynamics with discrete time and topological equivalence, Z. Anal. Anwend., 35 (2016), 21-39.
doi: 10.4171/ZAA/1553. |
[6] |
A. Bento and C. Silva,
Nonuniform $(\mu, \nu)$–dichotomies and local dynamics of difference equations, Nonlinear Anal., 75 (2012), 78-90.
doi: 10.1016/j.na.2011.08.008. |
[7] |
Á. Castañeda and G. Robledo,
A topological equivalence result for a family of nonlinear difference systems having generalized exponential dichotomy, J. Difference Equ. Appl., 22 (2016), 1271-1291.
doi: 10.1080/10236198.2016.1192161. |
[8] |
Á. Castañeda and G. Robledo,
Dichotomy spectrum and almost topological conjugacy on nonautonomous unbounded difference systems, Discrete Contin. Dyn. Syst., 38 (2018), 2287-2304.
doi: 10.3934/dcds.2018094. |
[9] |
Á. Castañeda, P. Monzón and G. Robledo, Smoothness of Topological Equivalence on the Half Line for Nonautonomous Systems, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 2484-2502.
doi: 10.1017/prm.2019.32. |
[10] |
J. Chu,
Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 137 (2013), 1031-1047.
doi: 10.1016/j.bulsci.2013.03.003. |
[11] |
Ch. V Coffman and J. J. Schäfer,
Dichotomies for linear difference equations, Math. Ann., 172 (1967), 139-166.
doi: 10.1007/BF01350095. |
[12] |
W. A. Coppel, Dichotomies in Stability Theory, Springer, Verlag, Berlin, 1978. |
[13] |
V. Crai and M. Aldescu, On $(h, k)$–dichotomy of linear discrete-time systems in Banach spaces, Difference equations, discrete dynamical systems and applications, Springer Proc. Math. Stat., 287, Springer, Cham, 2019,257–271.
doi: 10.1007/978-3-030-20016-9_10. |
[14] |
D. Dragi$\check{c}$ević, W. Zhang and W. Zhang,
Smooth linearization of nonautonomous difference equations with a nonuniform dichotomy, Math. Z., 292 (2019), 1175-1193.
doi: 10.1007/s00209-018-2134-x. |
[15] |
S. Elaydi, An Introduction to Difference Equations, Springer, New York, 2005. |
[16] |
D. M. Grobman,
Homeomorphism of systems of differential equations, Dokl. Akad. Nauk. SSSR, 128 (1959), 880-881.
|
[17] |
P. Hartman,
On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana (2), 5 (1960), 220-241.
|
[18] |
D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I, Springer, Heidelberg, Berlin, 2010. |
[19] |
J. Kurzweil and G. Papaschinopoulos,
Topological equivalence and structural stability for linear difference equations, J. Differ. Equ., 89 (1991), 89-94.
doi: 10.1016/0022-0396(91)90112-M. |
[20] |
Z. Lin and Y. X. Lin, Linear Systems Exponential Dichotomy and Structure of Sets of Hyperbolic Points, World Scientific, Singapore, 2000.
doi: 10.1142/9789812793027. |
[21] |
J. Palis,
On the local structure of hyperbolic points in Banach space, An. Acad. Brasil. Ci., 40 (1968), 263-266.
|
[22] |
K. J. Palmer,
A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 41 (1973), 753-758.
doi: 10.1016/0022-247X(73)90245-X. |
[23] |
G. Papaschinopoulos,
Criteria for an exponential dichotomy of difference equations, Czechoslovak Math. J., 35 (1985), 295-299.
|
[24] |
G. Papaschinopoulos and G. Schinas,
Structural stability via the density of a class of linear discrete systems, J. Math. Anal. Appl., 127 (1987), 530-539.
doi: 10.1016/0022-247X(87)90127-2. |
[25] |
G. Papaschinopoulos,
Some roughness results concerning reducibility for linear difference equations, Internat. J. Math. Sci., 11 (1988), 793-804.
doi: 10.1155/S0161171288000961. |
[26] |
G. Papaschinopoulos,
A linearization result for a differential equation with piecewise constant argument, Analysis, 16 (1996), 161-170.
doi: 10.1524/anly.1996.16.2.161. |
[27] |
R. Plastock,
Homeomorphisms between Banach spaces, T. Am. Math. Soc., 200 (1974), 169-183.
doi: 10.2307/1997252. |
[28] |
J. Popenda,
Gronwall type inequalities, Z. Angew. Math. Mech., 75 (1995), 669-677.
doi: 10.1002/zamm.19950750903. |
[29] |
C. Pugh,
On a theorem of P. Hartman, Amer. J. Math., 91 (1969), 363-367.
doi: 10.2307/2373513. |
[30] |
V. Rayskin,
$\alpha-$H$\ddot{o}$lder linearization, J. Differ. Equ., 147 (1998), 271-284.
doi: 10.1006/jdeq.1997.3410. |
[31] |
A. Reinfelds,
Global topological equivalence of nonlinear flows, Differencial'nye Uravnenija, 10 (1972), 1901-1903.
|
[32] |
A. Reinfelds, Grobman's–Hartman's theorem for time-dependent difference equations, Math. Differ. equ. (Russian), 9-13, Latv. Univ. Zinat. Raksti, 605, Latv. Univ., Riga, 1997. |
[33] |
A. Reinfelds and D. $\check{S}$teinberga., Dynamical equivalence of quasilinear equations, Internat. J. Pure Appl. Math. 98 (2015), 355-364.
doi: 10.1515/tmmp-2015-0035. |
[34] |
J. Schinas and G. Papaschinopoulos,
Topological equivalence via dichotomies and Lyapunov functions, Boll. Un. Mat. Ital. C (6), 4 (1985), 61-70.
|
[35] |
W. Zhou and W. Zhang,
Admissibility and roughness of nonuniform exponential dichotomies for difference equations, J. Funct. Anal., 271 (2016), 1087-1129.
doi: 10.1016/j.jfa.2016.06.005. |
[1] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[2] |
Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021 doi: 10.3934/fods.2021005 |
[3] |
Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005 |
[4] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[5] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[6] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[7] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[8] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[9] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[10] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[11] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[12] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[13] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[14] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[15] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[16] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[17] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[18] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[19] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[20] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]