-
Previous Article
Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy
- CPAA Home
- This Issue
-
Next Article
Homogenization and singular perturbation in porous media
A unique continuation property for a class of parabolic differential inequalities in a bounded domain
1. | College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China |
2. | College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China |
3. | Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA |
This article is concerned with a strong unique continuation property of a forward differential inequality abstracted from parabolic equations proposed on a convex domain $ \Omega $ prescribed with some regularity and growth conditions. Our results show that the value of the solutions can be determined uniquely by its value on an arbitrary open subset $ \omega $ in $ \Omega $ at any given positive time $ T $. We also derive the quantitative nature of this unique continuation, that is, the estimate of a $ L^2(\Omega) $ norm of the initial data, which is majorized by that of solution on the bounded open subset $ \omega $ at terminal moment $ t = T $.
References:
[1] |
M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer, Tokyo, 2017.
doi: 10.1007/978-4-431-56600-7. |
[2] |
T. Carleman, Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépedantes, Ark. Mat., Astr. Fys., 26 (1939), 9pp. |
[3] |
G. Camliyurt and I. Kukavica, Quantitative unique continuation for a parabolic equation, Indiana Univ. Math. J., 67 (2018), 657-678.
doi: 10.1512/iumj.2018.67.7283. |
[4] |
H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemann manifolds, Invent. Math., 93 (1988), 161-183.
doi: 10.1007/BF01393691. |
[5] |
L. Escauriaza, Carleman inequalities and the heat operator, Duke Math. J., 104 (2000),
113-127.
doi: 10.1215/S0012-7094-00-10415-2. |
[6] |
L. Escauriaza and F. J. Fernández, Unique continuation for parabolic operators, Ark. Mat., 41 (2003), 35-60.
doi: 10.1007/BF02384566. |
[7] |
L. Escauriaza, F. J. Fernández and S. Vessella, Doubling properties of caloric functions, Appl. Anal., 85 (2006), 205-223.
doi: 10.1080/00036810500277082. |
[8] |
N. Garofalo and F. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268.
doi: 10.1512/iumj.1986.35.35015. |
[9] |
D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schorodinger operators, Ann. Math., 121 (1985), 463-488.
doi: 10.2307/1971205. |
[10] |
C. E. Kenig, Quantitative unique continuation, logarithmic convexity of Gaussian means and
Hardy's uncertainty principle, Proc. Sympos. Pure Math., 79 (2008), 207{227.
doi: 10.1090/pspum/079/2500494. |
[11] |
I. Kukavica, Quantitative uniqueness for second-order elliptic operators, Duke Math. J., 91 (1998), 225-240.
doi: 10.1215/S0012-7094-98-09111-6. |
[12] |
H. Koch and D. Tataru, Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients, Commun. PDE, 34 (2009), 305-366.
doi: 10.1080/03605300902740395. |
[13] |
E. M. Landis and O. A. Oleinik, Generalized analyticity and some related properties of solutions of elliptic and parabolic equations, Russ. Math. Surv+, 29 (1974), 195-212. |
[14] |
F. Lin, A uniqueness theorem for parabolic equations, Commun. Pure Appl. Math., 43 (1990),
127-136.
doi: 10.1002/cpa.3160430105. |
[15] |
K. D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain, J. Funct. Anal., 259 (2010), 1230-1247.
doi: 10.1016/j.jfa.2010.04.015. |
[16] |
C. Poon, Unique continuation for parabolic equations, Comm. PDE, 21 (1996), 521-539.
doi: 10.1080/03605309608821195. |
[17] |
J. C. Saut and E. Scheurer, Unique continuation for evolution equations, J. Differ. Equ., 66 (1987), 118-137.
doi: 10.1016/0022-0396(87)90043-X. |
[18] |
C. Sogge, A unique continuation theorem for second order parabolic differential operators, Ark. Mat., 28 (1990), 159-182.
doi: 10.1007/BF02387373. |
[19] |
M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Prob., 25 (2009), 123013.
doi: 10.1088/0266-5611/25/12/123013. |
show all references
References:
[1] |
M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer, Tokyo, 2017.
doi: 10.1007/978-4-431-56600-7. |
[2] |
T. Carleman, Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépedantes, Ark. Mat., Astr. Fys., 26 (1939), 9pp. |
[3] |
G. Camliyurt and I. Kukavica, Quantitative unique continuation for a parabolic equation, Indiana Univ. Math. J., 67 (2018), 657-678.
doi: 10.1512/iumj.2018.67.7283. |
[4] |
H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemann manifolds, Invent. Math., 93 (1988), 161-183.
doi: 10.1007/BF01393691. |
[5] |
L. Escauriaza, Carleman inequalities and the heat operator, Duke Math. J., 104 (2000),
113-127.
doi: 10.1215/S0012-7094-00-10415-2. |
[6] |
L. Escauriaza and F. J. Fernández, Unique continuation for parabolic operators, Ark. Mat., 41 (2003), 35-60.
doi: 10.1007/BF02384566. |
[7] |
L. Escauriaza, F. J. Fernández and S. Vessella, Doubling properties of caloric functions, Appl. Anal., 85 (2006), 205-223.
doi: 10.1080/00036810500277082. |
[8] |
N. Garofalo and F. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268.
doi: 10.1512/iumj.1986.35.35015. |
[9] |
D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schorodinger operators, Ann. Math., 121 (1985), 463-488.
doi: 10.2307/1971205. |
[10] |
C. E. Kenig, Quantitative unique continuation, logarithmic convexity of Gaussian means and
Hardy's uncertainty principle, Proc. Sympos. Pure Math., 79 (2008), 207{227.
doi: 10.1090/pspum/079/2500494. |
[11] |
I. Kukavica, Quantitative uniqueness for second-order elliptic operators, Duke Math. J., 91 (1998), 225-240.
doi: 10.1215/S0012-7094-98-09111-6. |
[12] |
H. Koch and D. Tataru, Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients, Commun. PDE, 34 (2009), 305-366.
doi: 10.1080/03605300902740395. |
[13] |
E. M. Landis and O. A. Oleinik, Generalized analyticity and some related properties of solutions of elliptic and parabolic equations, Russ. Math. Surv+, 29 (1974), 195-212. |
[14] |
F. Lin, A uniqueness theorem for parabolic equations, Commun. Pure Appl. Math., 43 (1990),
127-136.
doi: 10.1002/cpa.3160430105. |
[15] |
K. D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain, J. Funct. Anal., 259 (2010), 1230-1247.
doi: 10.1016/j.jfa.2010.04.015. |
[16] |
C. Poon, Unique continuation for parabolic equations, Comm. PDE, 21 (1996), 521-539.
doi: 10.1080/03605309608821195. |
[17] |
J. C. Saut and E. Scheurer, Unique continuation for evolution equations, J. Differ. Equ., 66 (1987), 118-137.
doi: 10.1016/0022-0396(87)90043-X. |
[18] |
C. Sogge, A unique continuation theorem for second order parabolic differential operators, Ark. Mat., 28 (1990), 159-182.
doi: 10.1007/BF02387373. |
[19] |
M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Prob., 25 (2009), 123013.
doi: 10.1088/0266-5611/25/12/123013. |
[1] |
Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems and Imaging, 2021, 15 (4) : 641-681. doi: 10.3934/ipi.2021009 |
[2] |
Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103 |
[3] |
Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 |
[4] |
José G. Llorente. Mean value properties and unique continuation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185 |
[5] |
Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control and Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27 |
[6] |
Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012 |
[7] |
Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control and Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165 |
[8] |
A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515 |
[9] |
Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309 |
[10] |
Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047 |
[11] |
Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013 |
[12] |
Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems and Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619 |
[13] |
Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827 |
[14] |
Roberto Triggiani. Unique continuation of boundary over-determined Stokes and Oseen eigenproblems. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 645-677. doi: 10.3934/dcdss.2009.2.645 |
[15] |
Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623 |
[16] |
Taige Wang, Dihong Xu. A quantitative strong unique continuation property of a diffusive SIS model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1599-1614. doi: 10.3934/dcdss.2022024 |
[17] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[18] |
Matthias Täufer, Martin Tautenhahn. Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1719-1730. doi: 10.3934/cpaa.2017083 |
[19] |
Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2493-2510. doi: 10.3934/dcdsb.2018262 |
[20] |
Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]