
-
Previous Article
Semilinear Caputo time-fractional pseudo-parabolic equations
- CPAA Home
- This Issue
-
Next Article
A unique continuation property for a class of parabolic differential inequalities in a bounded domain
Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy
1. | Fundamental General Education Center, National Chin-Yi University of Technology, Taichung 411, Taiwan |
2. | Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan |
$ \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda \dfrac{1+au}{1+e^{d(1-u)}} = 0, \ -1<x<1, \\ u(-1) = u(1) = 0, \end{cases} \end{equation*} $ |
$ u $ |
$ \lambda >0 $ |
$ a\geq 0 $ |
$ d>0 $ |
$ (\lambda , ||u||_{\infty }) $ |
$ \ (d, a)\in \Omega \equiv \left \{ (d, a):(0<d<d_{1}, \text{ }a\geq A_{1}(d))\text{ or }(d\geq d_{1}, \text{ }a\geq 0)\right \} $ |
$ d_{1}\approx 2.225 $ |
$ A_{1}(d) $ |
$ (0, d_{1}]. $ |
$ \ (d, a)\in \Omega , $ |
$ d>0 $ |
$ a\geq \tilde{a}\approx 1.704 $ |
$ \tilde{a}, $ |
$ S $ |
$ (\lambda , \left \Vert u\right \Vert _{\infty }) $ |
References:
[1] |
A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519.
doi: 10.1137/0519036. |
[2] |
K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237.
doi: 10.1016/j.jde.2011.03.017. |
[3] |
T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13.
doi: 10.1512/iumj.1970.20.20001. |
[4] |
P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145.
doi: 10.1017/S0308210500011458. |
[5] |
J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257.
doi: 10.1093/imamat/39.3.241. |
[6] |
J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178.
doi: 10.1093/qjmam/42.1.159. |
[7] |
K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. |
[8] |
S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234.
doi: 10.1093/imamat/56.3.219. |
[9] |
S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153.
doi: 10.1016/j.jmaa.2003.10.021. |
show all references
References:
[1] |
A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519.
doi: 10.1137/0519036. |
[2] |
K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237.
doi: 10.1016/j.jde.2011.03.017. |
[3] |
T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13.
doi: 10.1512/iumj.1970.20.20001. |
[4] |
P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145.
doi: 10.1017/S0308210500011458. |
[5] |
J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257.
doi: 10.1093/imamat/39.3.241. |
[6] |
J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178.
doi: 10.1093/qjmam/42.1.159. |
[7] |
K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. |
[8] |
S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234.
doi: 10.1093/imamat/56.3.219. |
[9] |
S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153.
doi: 10.1016/j.jmaa.2003.10.021. |




[1] |
Chih-Yuan Chen, Shin-Hwa Wang, Kuo-Chih Hung. S-shaped bifurcation curves for a combustion problem with general arrhenius reaction-rate laws. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2589-2608. doi: 10.3934/cpaa.2014.13.2589 |
[2] |
Tzung-shin Yeh. S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response. Communications on Pure and Applied Analysis, 2017, 16 (2) : 645-670. doi: 10.3934/cpaa.2017032 |
[3] |
Sabri Bensid, Jesús Ildefonso Díaz. Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1757-1778. doi: 10.3934/dcdsb.2017105 |
[4] |
Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839 |
[5] |
Ansgar Jüngel, Ingrid Violet. Mixed entropy estimates for the porous-medium equation with convection. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 783-796. doi: 10.3934/dcdsb.2009.12.783 |
[6] |
Xue Dong He, Roy Kouwenberg, Xun Yu Zhou. Inverse S-shaped probability weighting and its impact on investment. Mathematical Control and Related Fields, 2018, 8 (3&4) : 679-706. doi: 10.3934/mcrf.2018029 |
[7] |
Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061 |
[8] |
Ansgar Jüngel, Stefan Schuchnigg. A discrete Bakry-Emery method and its application to the porous-medium equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5541-5560. doi: 10.3934/dcds.2017241 |
[9] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2829-2871. doi: 10.3934/dcds.2020388 |
[10] |
Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147 |
[11] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Evolution of a spiral-shaped polygonal curve by the crystalline curvature flow with a pinned tip. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5261-5295. doi: 10.3934/dcdsb.2019058 |
[12] |
Edoardo Mainini. On the signed porous medium flow. Networks and Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525 |
[13] |
Jiapeng Huang, Chunhua Jin. Time periodic solution to a coupled chemotaxis-fluid model with porous medium diffusion. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5415-5439. doi: 10.3934/dcds.2020233 |
[14] |
Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011 |
[15] |
Yasir Ali, Arshad Alam Khan. Exact solution of magnetohydrodynamic slip flow and heat transfer over an oscillating and translating porous plate. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 595-606. doi: 10.3934/dcdss.2018034 |
[16] |
S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590-601. doi: 10.3934/proc.2007.2007.590 |
[17] |
Alessandra Pluda. Evolution of spoon-shaped networks. Networks and Heterogeneous Media, 2016, 11 (3) : 509-526. doi: 10.3934/nhm.2016007 |
[18] |
Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110 |
[19] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[20] |
Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks and Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]