
-
Previous Article
Semilinear Caputo time-fractional pseudo-parabolic equations
- CPAA Home
- This Issue
-
Next Article
A unique continuation property for a class of parabolic differential inequalities in a bounded domain
Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy
1. | Fundamental General Education Center, National Chin-Yi University of Technology, Taichung 411, Taiwan |
2. | Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan |
$ \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda \dfrac{1+au}{1+e^{d(1-u)}} = 0, \ -1<x<1, \\ u(-1) = u(1) = 0, \end{cases} \end{equation*} $ |
$ u $ |
$ \lambda >0 $ |
$ a\geq 0 $ |
$ d>0 $ |
$ (\lambda , ||u||_{\infty }) $ |
$ \ (d, a)\in \Omega \equiv \left \{ (d, a):(0<d<d_{1}, \text{ }a\geq A_{1}(d))\text{ or }(d\geq d_{1}, \text{ }a\geq 0)\right \} $ |
$ d_{1}\approx 2.225 $ |
$ A_{1}(d) $ |
$ (0, d_{1}]. $ |
$ \ (d, a)\in \Omega , $ |
$ d>0 $ |
$ a\geq \tilde{a}\approx 1.704 $ |
$ \tilde{a}, $ |
$ S $ |
$ (\lambda , \left \Vert u\right \Vert _{\infty }) $ |
References:
[1] |
A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519.
doi: 10.1137/0519036. |
[2] |
K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237.
doi: 10.1016/j.jde.2011.03.017. |
[3] |
T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13.
doi: 10.1512/iumj.1970.20.20001. |
[4] |
P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145.
doi: 10.1017/S0308210500011458. |
[5] |
J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257.
doi: 10.1093/imamat/39.3.241. |
[6] |
J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178.
doi: 10.1093/qjmam/42.1.159. |
[7] |
K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. Google Scholar |
[8] |
S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234.
doi: 10.1093/imamat/56.3.219. |
[9] |
S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153.
doi: 10.1016/j.jmaa.2003.10.021. |
show all references
References:
[1] |
A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519.
doi: 10.1137/0519036. |
[2] |
K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237.
doi: 10.1016/j.jde.2011.03.017. |
[3] |
T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13.
doi: 10.1512/iumj.1970.20.20001. |
[4] |
P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145.
doi: 10.1017/S0308210500011458. |
[5] |
J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257.
doi: 10.1093/imamat/39.3.241. |
[6] |
J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178.
doi: 10.1093/qjmam/42.1.159. |
[7] |
K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. Google Scholar |
[8] |
S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234.
doi: 10.1093/imamat/56.3.219. |
[9] |
S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153.
doi: 10.1016/j.jmaa.2003.10.021. |




[1] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[2] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[3] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[4] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[5] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[6] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[7] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[8] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[9] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[10] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[11] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[12] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[13] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[14] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[15] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[16] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[17] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[18] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[19] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[20] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]