February  2021, 20(2): 559-582. doi: 10.3934/cpaa.2020281

Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy

1. 

Fundamental General Education Center, National Chin-Yi University of Technology, Taichung 411, Taiwan

2. 

Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

* Corresponding author

Received  May 2020 Revised  September 2020 Published  December 2020

Fund Project: This work is partially supported by the Ministry of Science and Technology of the Republic of China under grant No. MOST 103-2115-M-167-002

We study the classification and evolution of bifurcation curves for the porous-medium combustion problem
$ \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda \dfrac{1+au}{1+e^{d(1-u)}} = 0, \ -1<x<1, \\ u(-1) = u(1) = 0, \end{cases} \end{equation*} $
where
$ u $
is the solid temperature, parameters
$ \lambda >0 $
,
$ a\geq 0 $
, and the activation energy parameter
$ d>0 $
is large. We mainly prove that, on the
$ (\lambda , ||u||_{\infty }) $
-plane, the bifurcation curve is S-shaped with exactly two turning points for any
$ \ (d, a)\in \Omega \equiv \left \{ (d, a):(0<d<d_{1}, \text{ }a\geq A_{1}(d))\text{ or }(d\geq d_{1}, \text{ }a\geq 0)\right \} $
for some positive number
$ d_{1}\approx 2.225 $
and a nonnegative, strictly decreasing function
$ A_{1}(d) $
defined on
$ (0, d_{1}]. $
Furthermore, for any
$ \ (d, a)\in \Omega , $
we give a classification and evolution of totally four different S-shaped bifurcation curves. In addition, for any
$ d>0 $
and
$ a\geq \tilde{a}\approx 1.704 $
for some positive
$ \tilde{a}, $
then the bifurcation curve
$ S $
is type 4 S-shaped on the
$ (\lambda , \left \Vert u\right \Vert _{\infty }) $
-plane.
Citation: Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281
References:
[1]

A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519. doi: 10.1137/0519036.  Google Scholar

[2]

K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237. doi: 10.1016/j.jde.2011.03.017.  Google Scholar

[3]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13. doi: 10.1512/iumj.1970.20.20001.  Google Scholar

[4]

P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145. doi: 10.1017/S0308210500011458.  Google Scholar

[5]

J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257. doi: 10.1093/imamat/39.3.241.  Google Scholar

[6]

J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178. doi: 10.1093/qjmam/42.1.159.  Google Scholar

[7]

K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. Google Scholar

[8]

S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234. doi: 10.1093/imamat/56.3.219.  Google Scholar

[9]

S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153. doi: 10.1016/j.jmaa.2003.10.021.  Google Scholar

show all references

References:
[1]

A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519. doi: 10.1137/0519036.  Google Scholar

[2]

K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237. doi: 10.1016/j.jde.2011.03.017.  Google Scholar

[3]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13. doi: 10.1512/iumj.1970.20.20001.  Google Scholar

[4]

P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145. doi: 10.1017/S0308210500011458.  Google Scholar

[5]

J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257. doi: 10.1093/imamat/39.3.241.  Google Scholar

[6]

J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178. doi: 10.1093/qjmam/42.1.159.  Google Scholar

[7]

K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. Google Scholar

[8]

S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234. doi: 10.1093/imamat/56.3.219.  Google Scholar

[9]

S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153. doi: 10.1016/j.jmaa.2003.10.021.  Google Scholar

Figure 1.  Four different types of S-shaped bifurcation curves $ S $ of (1.1). (i). Type 1: $ \lambda _{\ast }< \lambda ^{\ast }<\bar{ \lambda} = \infty . $ (ii). Type 2: $ \lambda _{\ast }< \lambda ^{\ast }<\bar{ \lambda}<\infty . $ (iii). Type 3: $ \lambda _{\ast }<\bar{ \lambda} = \lambda ^{\ast }. $ (iv). Type 4: $ \lambda _{\ast }<\bar{ \lambda}< \lambda ^{\ast }. $
Figure 2.  Classification of bifurcation curves $ S $ for (1.1) with $ d>0 $ and $ a\geq 0 $. $ d_{3} $ $ (\approx 1.170)<d_{2} $ $ (\approx 1.401) $ $ <d_{1} $ $ (\approx 2.225). $ The bifurcation curves $ S $ for the region bounded between curves $ A_{4}(d) $, $ A_{5}(d) $ and $ A_{1}(d) $ are all S-shaped
Figure 3.  Graph of $ H_{d, a}(u) $ with $ H_{d, a}(u_{0})\leq 0 $ for some $ u_{0}\in (0, \gamma _{d, a}] $
Figure 4.  Graphs of functions $ A_{4}(d) $ and $ A_{5}(d) $ for $ 0<d\leq d_{3} $ $ (\approx 1.170). $
[1]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[2]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[3]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[4]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[5]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[8]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[9]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[10]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[11]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[12]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[13]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[14]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[15]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[16]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[17]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[18]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[19]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[20]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (45)
  • HTML views (83)
  • Cited by (0)

Other articles
by authors

[Back to Top]