-
Previous Article
Single species population dynamics in seasonal environment with short reproduction period
- CPAA Home
- This Issue
-
Next Article
Elliptic problems with rough boundary data in generalized Sobolev spaces
Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity
1. | Department of Mathematics, Hangzhou Normal University, Hangzhou, 311121, China |
2. | Department of Mathematics, Zhejiang University, Hangzhou, 310027, China |
We prove an almost global existence result for the Klein-Gordon equation with the Kirchhoff-type nonlinearity on $ \mathbb{T}^d $ with Cauchy data of small amplitude $ \epsilon $. We show a lower bound $ \epsilon^{-2N-2} $ for the existence time with any natural number $ N $. The proof relies on the method of normal forms and induction. The structure of the nonlinearity is good enough that proceeds normal forms up to any order.
References:
[1] |
A. Arosio and S. Panizzi,
On the well-posedness of the Kirchhoff string, T. Am. Math. Soc., 348 (1996), 305-330.
doi: 10.1090/S0002-9947-96-01532-2. |
[2] |
S. N. Bernstein,
Sur une classe d'$\acute{e}$quations fonctionnelles aux d$\acute{e}$riv$\acute{e}$es partielles, Izv. Akad. Nauk SSSR Ser. Mat., 4 (1940), 17-26.
|
[3] |
P. Baldi and E. Haus,
On the existence time for the Kirchhoff equation with periodic boundary conditions, Nonlinearity, 33 (2020), 196-223.
doi: 10.1088/1361-6544/ab4c7b. |
[4] |
R. W. Dickey,
Infinite systems of nonlinear oscillation equations related to the string, Proc. Amer. Math. Soc., 23 (1969), 459-468.
doi: 10.1090/S0002-9939-1969-0247189-8. |
[5] |
J. M. Delort,
On long time existence for small solutions of semi-linear Klein-Gordon equaitons on the torus, J. Anal. Math., 107 (2009), 161-194.
doi: 10.1007/s11854-009-0007-2. |
[6] |
J. M. Delort and J. Szeftel,
Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Am. J. Math., 128 (2006), 1187-1218.
doi: 10.1353/ajm.2006.0038. |
[7] |
D. Y. Fang, Z. Han and Q. D. Zhang,
Almost global existence for the semi-linear Klein-Gordon equation on the circle, J. Differ. Equ., 262 (2017), 4610-4634.
doi: 10.1016/j.jde.2016.12.013. |
[8] |
G. Kirchhoff, Vorlesungen $\ddot{u}$ber mathematische Physik: Mechanik, ch. 29, Teubner, Leipzig, 1876. |
[9] |
L. A. Medeiros and M. M. Miranda,
Solutions for the equation of nonlinear vibrations in Sobolev spaces of fractionary order, Mat. Apl. Comput., 6 (1987), 257-276.
|
[10] |
T. Matsuyama and M. Ruzhansky,
Global well-posedness of Kirchhoff system, J. Math. Pures Appl., 100 (2013), 220-240.
doi: 10.1016/j.matpur.2012.12.002. |
[11] |
S. Spagnolo,
The Cauchy problem for Kirchhoff equations, Rend. Sem. Mat. Fis. Milano, 62 (1992), 17-51.
doi: 10.1007/bf02925435. |
[12] |
T. Yamazaki,
Global solvability for the Kirchhoff equations in exterior domains of dimension larger than three, Math. methods Appl. Sci., 27 (2004), 1893-1916.
doi: 10.1002/mma.530. |
show all references
References:
[1] |
A. Arosio and S. Panizzi,
On the well-posedness of the Kirchhoff string, T. Am. Math. Soc., 348 (1996), 305-330.
doi: 10.1090/S0002-9947-96-01532-2. |
[2] |
S. N. Bernstein,
Sur une classe d'$\acute{e}$quations fonctionnelles aux d$\acute{e}$riv$\acute{e}$es partielles, Izv. Akad. Nauk SSSR Ser. Mat., 4 (1940), 17-26.
|
[3] |
P. Baldi and E. Haus,
On the existence time for the Kirchhoff equation with periodic boundary conditions, Nonlinearity, 33 (2020), 196-223.
doi: 10.1088/1361-6544/ab4c7b. |
[4] |
R. W. Dickey,
Infinite systems of nonlinear oscillation equations related to the string, Proc. Amer. Math. Soc., 23 (1969), 459-468.
doi: 10.1090/S0002-9939-1969-0247189-8. |
[5] |
J. M. Delort,
On long time existence for small solutions of semi-linear Klein-Gordon equaitons on the torus, J. Anal. Math., 107 (2009), 161-194.
doi: 10.1007/s11854-009-0007-2. |
[6] |
J. M. Delort and J. Szeftel,
Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Am. J. Math., 128 (2006), 1187-1218.
doi: 10.1353/ajm.2006.0038. |
[7] |
D. Y. Fang, Z. Han and Q. D. Zhang,
Almost global existence for the semi-linear Klein-Gordon equation on the circle, J. Differ. Equ., 262 (2017), 4610-4634.
doi: 10.1016/j.jde.2016.12.013. |
[8] |
G. Kirchhoff, Vorlesungen $\ddot{u}$ber mathematische Physik: Mechanik, ch. 29, Teubner, Leipzig, 1876. |
[9] |
L. A. Medeiros and M. M. Miranda,
Solutions for the equation of nonlinear vibrations in Sobolev spaces of fractionary order, Mat. Apl. Comput., 6 (1987), 257-276.
|
[10] |
T. Matsuyama and M. Ruzhansky,
Global well-posedness of Kirchhoff system, J. Math. Pures Appl., 100 (2013), 220-240.
doi: 10.1016/j.matpur.2012.12.002. |
[11] |
S. Spagnolo,
The Cauchy problem for Kirchhoff equations, Rend. Sem. Mat. Fis. Milano, 62 (1992), 17-51.
doi: 10.1007/bf02925435. |
[12] |
T. Yamazaki,
Global solvability for the Kirchhoff equations in exterior domains of dimension larger than three, Math. methods Appl. Sci., 27 (2004), 1893-1916.
doi: 10.1002/mma.530. |
[1] |
Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903 |
[2] |
Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076 |
[3] |
Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973 |
[4] |
Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359 |
[5] |
Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215 |
[6] |
Die Hu, Xianhua Tang, Qi Zhang. Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1071-1091. doi: 10.3934/cpaa.2022010 |
[7] |
Soichiro Katayama. Global existence for systems of nonlinear wave and klein-gordon equations with compactly supported initial data. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1479-1497. doi: 10.3934/cpaa.2018071 |
[8] |
Milena Dimova, Natalia Kolkovska, Nikolai Kutev. Global behavior of the solutions to nonlinear Klein-Gordon equation with critical initial energy. Electronic Research Archive, 2020, 28 (2) : 671-689. doi: 10.3934/era.2020035 |
[9] |
Guangyu Xu, Chunlai Mu, Dan Li. Global existence and non-existence analyses to a nonlinear Klein-Gordon system with damping terms under positive initial energy. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2491-2512. doi: 10.3934/cpaa.2020109 |
[10] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091 |
[11] |
Karen Yagdjian. The semilinear Klein-Gordon equation in de Sitter spacetime. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 679-696. doi: 10.3934/dcdss.2009.2.679 |
[12] |
Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359 |
[13] |
Elena Kopylova. On dispersion decay for 3D Klein-Gordon equation. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5765-5780. doi: 10.3934/dcds.2018251 |
[14] |
Chi-Kun Lin, Kung-Chien Wu. On the fluid dynamical approximation to the nonlinear Klein-Gordon equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2233-2251. doi: 10.3934/dcds.2012.32.2233 |
[15] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[16] |
Changxing Miao, Jiqiang Zheng. Scattering theory for energy-supercritical Klein-Gordon equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2073-2094. doi: 10.3934/dcdss.2016085 |
[17] |
Jungkwon Kim, Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. On Morawetz estimates with time-dependent weights for the Klein-Gordon equation. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6275-6288. doi: 10.3934/dcds.2020279 |
[18] |
Qinghua Luo. Damped Klein-Gordon equation with variable diffusion coefficient. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3959-3974. doi: 10.3934/cpaa.2021139 |
[19] |
Marcelo M. Cavalcanti, Leonel G. Delatorre, Daiane C. Soares, Victor Hugo Gonzalez Martinez, Janaina P. Zanchetta. Uniform stabilization of the Klein-Gordon system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5131-5156. doi: 10.3934/cpaa.2020230 |
[20] |
Marilena N. Poulou, Nikolaos M. Stavrakakis. Global attractor for a Klein-Gordon-Schrodinger type system. Conference Publications, 2007, 2007 (Special) : 844-854. doi: 10.3934/proc.2007.2007.844 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]