-
Previous Article
Single species population dynamics in seasonal environment with short reproduction period
- CPAA Home
- This Issue
-
Next Article
Elliptic problems with rough boundary data in generalized Sobolev spaces
Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity
1. | Department of Mathematics, Hangzhou Normal University, Hangzhou, 311121, China |
2. | Department of Mathematics, Zhejiang University, Hangzhou, 310027, China |
We prove an almost global existence result for the Klein-Gordon equation with the Kirchhoff-type nonlinearity on $ \mathbb{T}^d $ with Cauchy data of small amplitude $ \epsilon $. We show a lower bound $ \epsilon^{-2N-2} $ for the existence time with any natural number $ N $. The proof relies on the method of normal forms and induction. The structure of the nonlinearity is good enough that proceeds normal forms up to any order.
References:
[1] |
A. Arosio and S. Panizzi,
On the well-posedness of the Kirchhoff string, T. Am. Math. Soc., 348 (1996), 305-330.
doi: 10.1090/S0002-9947-96-01532-2. |
[2] |
S. N. Bernstein, Sur une classe d'$\acute{e}$quations fonctionnelles aux d$\acute{e}$riv$\acute{e}$es partielles, Izv. Akad. Nauk SSSR Ser. Mat., 4 (1940), 17-26. Google Scholar |
[3] |
P. Baldi and E. Haus,
On the existence time for the Kirchhoff equation with periodic boundary conditions, Nonlinearity, 33 (2020), 196-223.
doi: 10.1088/1361-6544/ab4c7b. |
[4] |
R. W. Dickey,
Infinite systems of nonlinear oscillation equations related to the string, Proc. Amer. Math. Soc., 23 (1969), 459-468.
doi: 10.1090/S0002-9939-1969-0247189-8. |
[5] |
J. M. Delort,
On long time existence for small solutions of semi-linear Klein-Gordon equaitons on the torus, J. Anal. Math., 107 (2009), 161-194.
doi: 10.1007/s11854-009-0007-2. |
[6] |
J. M. Delort and J. Szeftel,
Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Am. J. Math., 128 (2006), 1187-1218.
doi: 10.1353/ajm.2006.0038. |
[7] |
D. Y. Fang, Z. Han and Q. D. Zhang,
Almost global existence for the semi-linear Klein-Gordon equation on the circle, J. Differ. Equ., 262 (2017), 4610-4634.
doi: 10.1016/j.jde.2016.12.013. |
[8] |
G. Kirchhoff, Vorlesungen $\ddot{u}$ber mathematische Physik: Mechanik, ch. 29, Teubner, Leipzig, 1876. Google Scholar |
[9] |
L. A. Medeiros and M. M. Miranda, Solutions for the equation of nonlinear vibrations in Sobolev spaces of fractionary order, Mat. Apl. Comput., 6 (1987), 257-276. Google Scholar |
[10] |
T. Matsuyama and M. Ruzhansky,
Global well-posedness of Kirchhoff system, J. Math. Pures Appl., 100 (2013), 220-240.
doi: 10.1016/j.matpur.2012.12.002. |
[11] |
S. Spagnolo,
The Cauchy problem for Kirchhoff equations, Rend. Sem. Mat. Fis. Milano, 62 (1992), 17-51.
doi: 10.1007/bf02925435. |
[12] |
T. Yamazaki,
Global solvability for the Kirchhoff equations in exterior domains of dimension larger than three, Math. methods Appl. Sci., 27 (2004), 1893-1916.
doi: 10.1002/mma.530. |
show all references
References:
[1] |
A. Arosio and S. Panizzi,
On the well-posedness of the Kirchhoff string, T. Am. Math. Soc., 348 (1996), 305-330.
doi: 10.1090/S0002-9947-96-01532-2. |
[2] |
S. N. Bernstein, Sur une classe d'$\acute{e}$quations fonctionnelles aux d$\acute{e}$riv$\acute{e}$es partielles, Izv. Akad. Nauk SSSR Ser. Mat., 4 (1940), 17-26. Google Scholar |
[3] |
P. Baldi and E. Haus,
On the existence time for the Kirchhoff equation with periodic boundary conditions, Nonlinearity, 33 (2020), 196-223.
doi: 10.1088/1361-6544/ab4c7b. |
[4] |
R. W. Dickey,
Infinite systems of nonlinear oscillation equations related to the string, Proc. Amer. Math. Soc., 23 (1969), 459-468.
doi: 10.1090/S0002-9939-1969-0247189-8. |
[5] |
J. M. Delort,
On long time existence for small solutions of semi-linear Klein-Gordon equaitons on the torus, J. Anal. Math., 107 (2009), 161-194.
doi: 10.1007/s11854-009-0007-2. |
[6] |
J. M. Delort and J. Szeftel,
Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Am. J. Math., 128 (2006), 1187-1218.
doi: 10.1353/ajm.2006.0038. |
[7] |
D. Y. Fang, Z. Han and Q. D. Zhang,
Almost global existence for the semi-linear Klein-Gordon equation on the circle, J. Differ. Equ., 262 (2017), 4610-4634.
doi: 10.1016/j.jde.2016.12.013. |
[8] |
G. Kirchhoff, Vorlesungen $\ddot{u}$ber mathematische Physik: Mechanik, ch. 29, Teubner, Leipzig, 1876. Google Scholar |
[9] |
L. A. Medeiros and M. M. Miranda, Solutions for the equation of nonlinear vibrations in Sobolev spaces of fractionary order, Mat. Apl. Comput., 6 (1987), 257-276. Google Scholar |
[10] |
T. Matsuyama and M. Ruzhansky,
Global well-posedness of Kirchhoff system, J. Math. Pures Appl., 100 (2013), 220-240.
doi: 10.1016/j.matpur.2012.12.002. |
[11] |
S. Spagnolo,
The Cauchy problem for Kirchhoff equations, Rend. Sem. Mat. Fis. Milano, 62 (1992), 17-51.
doi: 10.1007/bf02925435. |
[12] |
T. Yamazaki,
Global solvability for the Kirchhoff equations in exterior domains of dimension larger than three, Math. methods Appl. Sci., 27 (2004), 1893-1916.
doi: 10.1002/mma.530. |
[1] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[2] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[3] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[4] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[5] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[6] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[7] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[8] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[9] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[10] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[11] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[12] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[13] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[14] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[15] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[16] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[17] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[18] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[19] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[20] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]