February  2021, 20(2): 755-762. doi: 10.3934/cpaa.2020288

Single species population dynamics in seasonal environment with short reproduction period

Bolyai Institute, University of Szeged, H-6720 Szeged, Hungary

* Corresponding author

Received  July 2020 Revised  September 2020 Published  December 2020

Fund Project: A. Dénes was supported by the Hungarian National Research, Development and Innovation Office grant NKFIH PD_128363 and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. G. Röst was supported by EFOP-3.6.1-16-2016-00008 and by the Hungarian National Research, Development and Innovation Office the grant NKFIH KKP_129877 and TUDFO/47138-1/2019-ITM

We present a periodic nonlinear scalar delay differential equation model for a population with short reproduction period. By transforming the equation to a discrete dynamical system, we reduce the infinite dimensional problem to one dimension. We determine the basic reproduction number not merely as the spectral radius of an operator, but as an explicit formula and show that is serves as a threshold parameter for the stability of the trivial equilibrium and for permanence.

Citation: Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288
References:
[1]

M. Gyllenberg, I. Hanksi and T. Lindström, Continuous versus discrete single species population models with adjustable reproduction strategies, Bull. Math. Biol., 59 (1997), 679–705. doi: 10.1007/BF02458425.  Google Scholar

[2]

E. Liz, Clark's equation: a useful difference equation for population models, predictive control, and numerical approximations, Qual. Theory Dyn. Syst., 19 (2020), 11 pp. doi: 10.1007/s12346-020-00405-1.  Google Scholar

[3]

K. Nah and G. Röst, Stability threshold for scalar linear periodic delay differential equations, Canad. Math. Bull., 59 (2016), 849–857. doi: 10.4153/CMB-2016-043-0.  Google Scholar

[4]

R. Qesmi, A short survey on delay differential systems with periodic coefficients, J. Appl. Anal. Comput., 8 (2018), 296–330. doi: 10.11948/2018.296.  Google Scholar

[5]

G. Röst, Neimark–Sacker bifurcation for periodic delay differential equations, Nonlinear Anal., 60(2005), 1025–1044. doi: 10.1016/j.na.2004.08.043.  Google Scholar

[6]

H. L. Smith, An introduction to delay differential equations with applications to the life sciences, Texts in Applied Mathematics, Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[7] H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, NJ, 2003.   Google Scholar
[8]

X. Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Differ. Equ., 29 (2017), 67-82.  doi: 10.1007/s10884-015-9425-2.  Google Scholar

show all references

References:
[1]

M. Gyllenberg, I. Hanksi and T. Lindström, Continuous versus discrete single species population models with adjustable reproduction strategies, Bull. Math. Biol., 59 (1997), 679–705. doi: 10.1007/BF02458425.  Google Scholar

[2]

E. Liz, Clark's equation: a useful difference equation for population models, predictive control, and numerical approximations, Qual. Theory Dyn. Syst., 19 (2020), 11 pp. doi: 10.1007/s12346-020-00405-1.  Google Scholar

[3]

K. Nah and G. Röst, Stability threshold for scalar linear periodic delay differential equations, Canad. Math. Bull., 59 (2016), 849–857. doi: 10.4153/CMB-2016-043-0.  Google Scholar

[4]

R. Qesmi, A short survey on delay differential systems with periodic coefficients, J. Appl. Anal. Comput., 8 (2018), 296–330. doi: 10.11948/2018.296.  Google Scholar

[5]

G. Röst, Neimark–Sacker bifurcation for periodic delay differential equations, Nonlinear Anal., 60(2005), 1025–1044. doi: 10.1016/j.na.2004.08.043.  Google Scholar

[6]

H. L. Smith, An introduction to delay differential equations with applications to the life sciences, Texts in Applied Mathematics, Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[7] H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, NJ, 2003.   Google Scholar
[8]

X. Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Differ. Equ., 29 (2017), 67-82.  doi: 10.1007/s10884-015-9425-2.  Google Scholar

Figure 1.  The function $ f(t,x) $ for $ x\in\{5,10,100\} $ and $ \hat\alpha = 1000 $
Figure 2.  Solutions of (1.1) with periodic Ricker-type birth function for different values of parameter $ \hat\alpha $
Figure 3.  Solutions of (1.1) with periodic Beverton–Holt-type birth function for different values of parameter $ \hat\alpha $
[1]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[2]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[3]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[4]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[5]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[6]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[7]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[8]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[9]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[10]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[11]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[12]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[13]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[14]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[15]

Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135

[16]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[17]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[18]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[19]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[20]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (50)
  • HTML views (86)
  • Cited by (0)

Other articles
by authors

[Back to Top]